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PART I: DETECTION IN GAUSSIAN MIXTURE NOISE 

1.0 INTRODUCTION 

1.1 BACKGROUND SUMMARY 

In many applications, the passive detection of signals in noise 

is not adequately performed if the detector design is based on Gaussian 

noise assumptions. Particularly in the LF and VLF portions of the electro- 

magnetic spectrum and in the acoustic environment, the ambient noise observed 

by the receiver contains impulsive components which cause the noise probability 

distribution to depart from the Gaussian model. As a result, the sensitivity 

of a Gaussian-based detector is degraded for given false alarm probability. 

Therefore, much effort has been focused on realizing improved detector and 

receiver designs that are matched to realistic noise distributions, using 

measured values of noise parameters. 

The detector design problem is complicated by the fact that the 

parameters describing the noise distribution are difficult to measure and 

vary with time. Since it is not practical in these situations to employ 

theoretically "optimum" detectors which rely on a priori knowledge of noise 

parameters, current research is aimed at discovering effective detection pro- 

cedures which are "robust", or relatively insensitive to uncertainties in the 

values of distributional parameters, if not "nonparametric", or "distribution- 

free". Also of interest are realistic noise models whose parameters are 

easily measured physical quantities. 

Noise due to man-made sources can degrade detection and communica- 

tion peirformance in every portion of the spectrum. Impulsive interference 
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due to multiple-access communications emmissions, for example, results in 

a non-Gaussian received noise distribution. The threat of intentional inter- 

ference or jamming has forced system designers to take this possibility into 

account by modifying their detection procedures. Without formulating the 

problem as a non-Gaussian noise problem per se. many heuristic receivers have 

been developed to make the detection and communication systems operate 

satisfactorily whether jammed or not jammed. 

The success of certain heuristic detectors in adapting to non- 

Gaussian noise implies that their designers have made correct assumptions 

concerning the noise process. For the most part, these practical detectors 

are based on recognizing the "short term" or time varying nature of the noise, 

rather than its "long term" or marginal (unconditional) distribution. There- 

fore, it seems likely that modelling non-Gaussian noise as nonstationary noise 

would yield better results than the present theoretical emphasis on marginal 

non-Gaussian noise models. 

In order to show the motivation for our efforts, in the following 

paragraphs we give further background on non-Gaussian modelling, on receiver 

design, and on jamming interference. 

1.1.1    Non-Gaussian Noise Models 

The modelling effort evidenced in the current detection literature 

has been approached from two directions: empirical and theoretical. 

A good example of the empirical noise modelling approach is the 

work reported by Fennick [1], who gathered statistics of telecommunication 

channels and postulated on the basis of measured pdf's that the underlying 

distribution could be characterized by the sum of a Gaussian pdf and an 

exponential term: 
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pdf = Gaussian + exponential 

= a exp(-x2/2a2) + b expC-clx]). (l.l-D 

In this manner, the "larger than Gaussian" tails of the observed statistics 

were accounted for. 

The theoretical approach, one working from the physics of the 

situation, can be exemplified by the work of Hall [2], who supposed that 

the received noise is a narrowband Gaussian process multiplied by a time- 

varying weighting factor. Hall's pdf was found to take the form 

pdf = const. (x2 + a2)-('"-'l)/^ (1.1-2) 

Good fits to data were reported, using certain values of the parameters. 

However, the parameters themselves were not identified with the physical 

processes because of simplifications chosen to make the mathematics tractable. 

Middleton [3, 4, 5] asserts that he has found tractable pdf's 

that fit known data well by approaching the problem from the physical/ 

theoretical point of view, and that the parameters of the distribution 

retain physical interpretations (therefore being suitable for measurement). 

Moreover, the "Class A, B, and C" noise models Middleton has developed are 

claimed to be "canonical", or capable of generating the wide variety of ob- 

servable statistics while keeping the same functional form. For example, 

the pdf for Middleton's Class A noise, for which the noise bandwidth is said 

to be less than that of the desired signal, takes the form of an infinite 

sum of weighted Gaussian pdf's with increasing variances: 

P^f -^^-'t^   exp(-x^/2„J). .a , -^- ,        ,1.1-3) 

m=u 
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where r is the ratio of the power in the Gaussian portion of the interference 

to that in the impulsive (Poisson) component, and A is called the "impulsive 

index," a kind of counting function for the impulsive interference and 

related to the amount of overlap in individual interference waveforms 

(large A corresponds to a trend toward Gaussian). An excellent approximation 

for small values of A is given by Middleton [5] and by Vastola [16] as 

pdf = a exp(-xV2af) + b exp(-x^/2a2), (1.1-4) 

or the weighted sura of two Gaussian density functions.    Although we have 

simplified the notation somewhat in this presentation, each of the parameters 

is given a physical, measurable interpretation by Middleton. 

1.1.2 Non-Gaussian Detector Designs (known signal) 

If N independent samples |x.| of a received waveform x(t) are to 

be tested as to whether x(t) contains noise only or known signal  s(t) plus 

noise, the log-likelihood ratio takes the form 

r^   r 1 s+n 
logA(xi, X2, ,.., Xj^) = ) log pdf(x. ls.)/pdf(x^. ls.=0)   %   threshold (1.1-5) 

i=l   "^ •'  " 

where x. = x(t.) and s. = s(t.). For stationary Gaussian noise the resulting 

statistical test is the linear detector 

N 
x.s.  <  threshold; (1.1-6) 

n 
i-1     " 
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the receiver needs only to perform a weighted sum (filtering) of the input 

data and to compare the value of that sum to a threshold value. 

If the noise is not Gaussian, the likelihood function may be 

difficult to interpret in terms of a discrete component or analog implementa- 

tion, depending on the form of the noise pdf. For Hall's pdf, (1.1.2), the 

closed form permits solving directly for the optimum receiver structure as 

N 

[ 
i = l 
I log (x. -= s.)^ + a2 log threshold (1.1.7) 

where a is the parameter shown in (1.1-2). For pdf's which are not closed 

forms, implementation may be performed using digital processing; however, analysis 

may require making some approximations. For example, even for the two-term 

approximation to Middleton's pdf given by (1.1-4), the likelihood ratio is 

logA 
„   , a exp - (x. - s.)2/2af + b exp - (x. - s.)2/2aij 

= ) log! !^ '- '- '- '— -).  (1.1-^ 
fzi        I      a exp(-x?/2af) + b exp(-x?/2a|) 

A way out of the analytical difficulty which has been used extensively is to 

treat the special case of weak, or "threshold" signals and therefore to obtain 

what are termed locally optimal or threshold receivers. How this approach 

works may be explained as follows: since the signal is "small", to a good 

degree of approximation the pdf may be written as the pdf for no signal 

plus a first order term in a Taylor series expansion [s, 6] , giving 

P(x. - 0) 
= 1 - 

p(Xi) 
1 - s, 

3X. 
log p(x.) 

(1.1-9) 
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This results in the statistical test 

y  ^i ^i  " Z ^i ^^^i^  ^  threshold = n,     (1.1-10) 

i=l       i=l 

which resembles the "linear" test (1.1-6) after the data has been transformed 

by the nonlinearity 

P'(xJ 
g(x.) = -^  =y.. (1.1-11) 

The form of this nonlinearity is highly sensitive to the parameters and 

functional form of the assumed pdf, as illustrated in Figure 1.1-1. In that 

figure, we observe that for Gaussian noise, g(x) is simply a linear depend- 

ence, whereas for the other assumed distributions shown the transformation 

can be almost any form, depending on the shape and parameters of the noise 

pdf. 

The form of the nonlinearity requires either knowledge of 

adaptation to the noise conditions which exist. Therefore, Middleton [5, 8] 

stresses the correspondence between the parameters of his pdf model and 

measurable quantities. The ability of the receiver to perform satisfactory 

adaptation to time-varying noise parameters can make the difference between 

success of failure for practical non-Gaussian detectors [9]. Martinez and 
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FIGURE 1.1-1.    LOCALLY OPTIMUM NON-GAUSSIAN DETECTOR STRUCTURE 
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Thomas [lo] , for example, report that sampled Artie under-ice ambient 

acoustic noise data reveal a nonstationary process with impulsive components; 

this behavior is well illustrated by the time history of sample variance 

shown in Figure 1.1-2. Because the impulsive components occur relatively 

infrequently, large sample sizes are required to determine accurate estimates 

of impulsive parameters. This requirement conflicts with the need to take 

time-varying noise properties into account over a smaller sample size. 

Since the form of the nonlinearity for locally optimum detection 

is often complicated as well as sensitive to the accuracy of measured noise 

distribution parameters, investigations have been made to determine whether 

simplified or approximate versions of the transformations, which use fewer 

parameters, can be used with success. For example, Miller and Thomas [llj 

report that relatively simple piecewise linear approximations can give 

nearly as good asymptotic performance (relative to a Gaussian detector) as 

the locally optimal nonlinearity. Among the simplified nonlinearities 

they studied were the "amplifier-limiter" (also known as a "clipper" or 

"soft limiter"), the "hard limiter", and the "noise blanker" approximations 

to the optimum nonlinearity for detection in a Gaussian-Laplace mixture 

noise distribution. These transformations are shown in Figure 1.1-3. 
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We note that in equation (1.1-9) above, if the true signal 

values are the same (s. = s, Vi), the receiver design becomes 

N N 

s    2,    9  ^^i^ ^ "^ or      Y.  9^^i)  <   I 
i=l 1=1 

:i.i-i2: 

The receiver does not use any information on the value of the (constant) 

signal, since the thresholdn' is to be determined by false alarm probability 

requirements. Therefore, an advantage of threshold or weak signal locally 

optimum detector designs is that they do not require prior knowledge of the 

signal parameters if they are "slowly varying" over the N samples of the 

input.. 

In general, the log-likelihood ratio for known signal values 

<s.| depends strongly on these values. Therefore, a penalty in loss of 

performance can be expected if the actual received signal values differ 

(for example, due to loss of synchronization). This statement is true 

even for a constant signal (s.=s) except for the special case of Gaussian 

noise, as seen from equation (1.1-5), so we expect to see, for example, 

close agreement of detection performance between locally optimum and optimum 

detectors when the signal is actually weak, and a loss in the locally 

optimum detector's performance relative to the optimum when the signal is 

actually strong. 

For a single sample (N=l), all distributions of transformed 

variables giving likelihood ratios which are monotonic yield the same 

detection performance, since then 

Pr A(xi)> n} = Pr jxi > nj (1.1-13) 

11 
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1.1.3    Detector Design for Unknown Parameters. 

When either signal or noise parameters (or both) are unknown, 

we can choose to use estimated values of these parameters, risking a loss 

in detection performance if the actual values differ significantly from 

those assumed. However, if the distributions of the unknown parameters 

are known, decision theory for composite hypothesis testing [l9J requires 

that we use the unconditional likelihood ration (LR) test 

fdei p(X|.0i, Hi) p{ei|Hi) 
A(X) = =J^  (1.1-14) 

JdGo p(Xleo, HQ) p(eo|Ho) 

where the data X and the parameters eg and e^ can be vectors or sets. 

If the distrubutions for the unknown parameters are not avail- 

able, or if they are considered "unknown nonrandom", the best test procedure 

is not clearly specified by decision theory. However, since the optimum 

performance would be achieved if somehow a perfect measurement were made 

of the unknown parameters, it is reasonable to use the generalized 

likelihood ration (GLR) 

max p (Xle^ , H^) 

Ag(x) =   ^—■  .    (i-i-is: 

max p (X|eg , HQ) 

% 

For example, testing the hypothesis Hg: x^.=G(0, a^)  against 

H^: x.=G(m, a^), where neither the mean m nor the variance a^  is known, 

results in the test |20J 

12 
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i i i n(7)2 

N 

I 
i=l k=l 

^     ri 

^                    N 

Z       (X,-X)2 
i=l 

(1.1-15) 

which is equivalent to comparing the ratio of estimates (m)^/a^ to a 

threshold. (If m is the value of a constant "signal", then the ratio is 

a form of estimated signal-to-noise ratio.) 

1.1.4 Intermittent Gaussian Interference as Non-Gaussian Noise 

An understanding of non-Gaussian noise as arising from inter- 

mittent or time-varying noise is evident in the present communications 

literature, which reflects much concern over the disruption of communica- 

tions and/or detections due to intentional interference or jamming. In 

frequency hopping communications systems, for example, it has been shown 

that for limited jammer power an effective jamming strategy is one for 

which the jamming is present in the dehopped bandwidth some fraction of 

the time (y). rather than continuously. Thus the marginal pdf of the 

received noise at a given time, assuming Gaussian noise jamming, is 

given by 

/27 p(x) = (l-y) — exp(-x2/20^) 

.y-=== expp/2(ag . aj)]  . 

(a^ = background noise power, a^ = jamming noise power)   (1.1-17) 

13 
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which has the same form as (1.1-4).    However, this Gaussian-Gaussian mixture 

type of non-Gaussian noise in these jamming situations is the result of the 

nonstationary or time-varying properties of the total  noise, which is 

Gaussian at a given time.    That is. 

/2TT  a. 
exp -^VK (l.l-18a) 

where 

"1 = a^ +    a^ 

with probability l-y 

with probability   y 
(1-1.18b) 

Thus we observe that in this case a correspondence or analogy 

exists between "non-Gaussian" noise and "nonstationary Gaussian" noise. For 

example, the joint pdf of L independent samples of noise from the distribution 

given by (1.1-4) is, using a=(l-Y)/cri»^  and b=Y/a2*^  . 

L   , , ,  , - 

k=l '■ 

■ I, (i) Y (1-^)   .  ^   -(1-0/2 

I'Z 

exp< ■2^ Z 
ki=l 

(27raf )' 

^•^1 I        (2^a§ )'^^ 

^^P<- 2^ 
k2=l 

(1.1-19) 

14 



J. S. LEE ASSOCIATES, INC. 

This may be written 

I 

■ PL^I) = Y.    •"«- PL^^I^)' (1.1-20) 
Si=0 

where p may be interpreted as the probability that "a of the noise samples 

have variance af and L-«, have variance a^", and p,()<.lii) is the joint density 

of the samples conditioned on this event. 

With this viewpoint we can interpret Middleton's Class A pdf 

(1.1-3) as '« ■ 

p(x^) = PQ(X^; a.) where o| = a^ with probability 

p = e' A /m!,   m = 1, 2, ...; (1.1-21) 

that is, conditionally the noise is Gaussian, with the variance selected 

randomly from a discrete set of values.        ' 

15 
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1.2     DETECTION THEORY FOR MIXTURE NOISE 

1.2.1   PDF Formulations and Examples 

We consider the situation in which the noise is modelled as 

having the mixture probability density function (pdf) 

Pn^^) =Z V''"^^)' E"m =1 (1-2-1 
m 

where each function f (x) is a pdf weighted by a positive constant <^, 

0< K < 1. The argument x may be considered a scalar for lowpass noise or 

complex (two-dimensional) for bandpass noise. For example, the model pro- 

posed by Middleton [3] has the form in which each pdf f^{x)  is Gaussian: 

^  -X m -x2/2a2 

a/2TT 
m=0 

Often two terms are used in the mixture model, for example, the 

Gaussian-Gaussian mixture 

p^(x) = (1-e) fQ(x;ai) + e fg(x;a2), a2>ai, (1.2-3) 

or the Gaussian-Laplace mixture 

p^(x) = (l-e)f3(x;ai) + s-f e-"l^l.        ^^2-4) 

In that the two-term models express the condition that the noise is nearly 

Gaussian (the first term) but with distributional tails higher than the 

Gaussian (contributed by the second term), they are sometimes called 

"contamination" models. 

16 
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1.2.2   Interpretation of the Mixture pdf 

Consider the class of mixture densities in which the component 

pdf's f (x) take the same functional form, but with different parameter '^    m 

values, that is. 

^m^^) ^^A^^'^m^' 

where f.( ; ) is the common functional form for the family "A" of the pdf's, 

and 5 is a particular value of a parameter (or set of parameters) determining 

the scaling, location, etc., of the pdf. Then the mixture pdf has the 

interpretation 

^nM=Z  ^m V^' ^m)   -  : 
m 

= J dc f/^(x;5) p^(?). (1.2-5) 

Under this view, P^(x)is the result of averaging the parametric 

pdf fn(x;c) over a discrete pdf for the values of ?: 

m m 

For example, in Middleton's non-Gaussian noise model, the parameter ? is 

the variance of a zero-mean Gaussian pdf, and the K   describe a Poisson 

(discrete) pdf for occurrence of the variance values. 

1.2.3   Form of Likelihood Ratio '^, 

For additive and independent signals and noise, the pdf under 

the alternative hypothesis under the mixture model of noise becomes 

P3,,(x) = P,(x-s) = X^m^m(^-^)- ^'-'-'^ 
m 

17 
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The likelihood ratio (LR)  then takes the form 

y <    f (x-s) /   \       A    m   m^       ' 

/ . m   m 

ZK    f (x)   [f (x-s)/f (x)] 

m 

m 

=  yw (x)  A (x),   yw  (x) = 1, (1.2-8) 
Z^ m^   '    m^   '^'   £^ m    ^ 

a mixture of individual LR's A-,(x) weighted by the (nonconstant) functions 

Z_ m m^ ' 
m 

For example, for the Gaussian-Gaussian mixture (1.2-3), 

n  ^ -i^-x^/2a? (l-ejai^e  '1 , ^ 
Wi(x)=-~ ^ — — =1-W^(x).   (1-2-10) 

(l-Ejoi-^e    1 + e 02 e  '2 

In the case that the signal has unknown parameters {6}, the LR 

formulation (1.2-8) becomes the generalized likelihood ratio 

M^. = ^4#^ = ^e|M.e)l 

= I V^) ^ek^^'^^l • (1-2-11) 
m 

18 
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1.2.4   Superposition of Detection Measures 

It has been shown that the pdf for mixture noise is an additive 

combination of individual pdf's: 

Pn'")'!'™^™'-"- Z"™='- ^'■'-'''- 

For this reason the probability of false alarm (Pp^) or Type 

I detection error is, given the threshold n, 

Pp;^{n) = Pr{A(x) > n|Ho} 

= Pr{x ER IHQ} 

•/ 
dx p^(x) 

R 
n 

ZK  /  dx f^(x) m J     m ' 
m    R 

n 

= I«™U>'- ''■'-"' 
m 

We see that Ppaln) is the superposition of PFA's arising from the individual 

terms in the pdf. Similarly, the detection probability (PQ) is a super- 

position of individual probabilities: 

19 
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Pp(n;s) = Pr{A(x) > n|Hi} 

= Pr{X e R IHi} 

= / dx P„(x-s) 

n 

m    R n 

dx f„(x-s) m 

= I^mPo.m^^'^)-  - (1-2-14) 
m 

Thus in a significant manner the use of mixture densities to characterize 

non-Gaussian noise facilitates calculation of detection measures. 

20 
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1.3     TREATMENT OF BANDPASS NON-GAUSSIAN NOISE 

For zero-mean, stationary bandpass Gaussian noise, it has long 

been understood that the sample function of the noise random process can be 

represented in quadrature form by the decomposition 

n(t) = n^(t) costoot - n^{t)  sinwyt, (1.3-1) 

where fo = ajo/2-rr is the center frequency of the band, n^(t) is an "in-phase" 

random process, and n (t) is a "quadrature" random process. Both n^(t) and 

n (t) are lowpass Gaussian random processes, with 

{n^(t)| = E{n3(t)} = 0, for E{n(t)} = 

{nj(t)} = E{n2(t)j = E{n2(t)} = a^ 

(1.3-2) 

The correlation functions pertaining to the quadrature 

components n (t) and n (t) are 

R^^T) = E|n^(t)n^(t+T)| = EJn2(t)n2(t + T)| 

and 

^   j        df S^(f-fo)cos2^fT (i.3_3) 

R,3(x) = E{n^(t)n3(t+x)} 

=    r     df Sjf-fo)sin2TTfT. (1-3-4) 
^ -B 

-n>     -0. 
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From these correlation functions we observe that at the same time instant 

(T=0), Rpg^O and therefore n and n are uncorrelated. Further, if the 

noise power spectral density S (f) is even about the center frequency, fg, 

then R(,2(T) = 0 for all T, implying that n and n are uncorrelated for all 

pairs of time instants. 

For n (t) and n (t) Gaussian, zero correlation is equivalent 

to statistical independence, and we can write their joint pdf as 

Pncns^'^'^) -  Pnc^^^Pns^^) = 2^2 exp 

n2 + n2 
c  s 
■2^ 

(1.3-5; 

Now the question we wish to address is how to model the joint 

pdf of the quadrature components of a bandpass non-Gaussian process. Under 

the assumption that the noise spectrum is even about the center frequency, 

we can state that n and n are uncorrelated. If they are not Gaussian, the 
c     s "^ 

lack of correlation no longer implies independence, although of course 

independence implies they are uncorrelated. 

1.3.1   Independent Quadrature Component Assumption 

One assumption which can be made concerning the quadrature 

components of bandpass non-Gaussian noise is that they are independent. Thus, 

for example, for Gaussian-Gaussian mixture noise we could write 
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p    (a,B) = p  (a)p ^(B) 

il-e)  ^ Vj^] ^  e 1- p/ ^ 
'1 ■ GWi a, ^G\0; 

(1-e) — pp P- + e — pp. 

+ T^ ^ exp 
£TTaia2 

a^   6^ 
2^ " 2c 

+ |iiz£lexp 
iiiTaia2 2^-^l-" 2^^^P|--l^i • (1-3-6) 

Such a model was used by Trunk [20] to study the performance of radar 

detectors in sea clutter. 

For noncoherent detection, we are interested in the distribution 

of the envelope of the noise. Using the independent quadrature version of 

Gaussian-Gaussian noise, the pdf of the envelope is 

P  ( "^env u) = u 
-^ 0 

dd) p    (u cos*, u sintj)) ^ ^nc,ns ^ 

= U-e)^.^P,(^)..-^P,(i^) 

^  2£(1-£)U exp T ) " (1.3-7a) 

where Pn(') is the Rayleigh pdf: 

Pn(x) = X e"^^/^ x 5 0. (1.3-7b) 
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It can be observed from the above expression that the assumption 

of independent quadrature components yields an envelope pdf with some 

complexity. With a signal present, the envelope pdf is very difficult to 

analyze, not having a closed form [20]. 

Another aspect of this noise modelling assumption is revealed by 

the pdf of the phase of the noise, found to be 

Pphase^*) = r du u p^^^^^Cucos*, usin*) 
-'0 

(l-£)2 + e^ 
2TT 

ZTT   a2a|+ [a'f- a\V  sin^(j,COS- 
(1.3-8) 

Obviously, the phase of the bandpass Gaussian-Gaussian mixture noise is not 

uniformly distributed when it is assumed that the noise quadrature components 

are independent, nor is the phase independent of the envelope. 

1.3.2   Circularly Symmetric Quadrature Assumption 

If it is understood that the quadrature components n^, and n^ of 

the bandpass noise are in general statistically dependent when the noise is 

nonGaussian, then finding the form of the joint density of n^ and n^ becomes 

the problem. Two methods [21] are available for constructing a joint pdf 

when it is assumed that the joint pdf has the form 

Pncns^^'^) ~-  9 R-^^'j' (1.3-9) 

some function of /a2 + 32  that is, the pdf possesses "circular symmetry". 
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The first method is to select the function g(R), recognizing that 

R is the envelope of the noise, and assuming that the phase of noise relative 

to the center frequency is independent of the envelope. Then the joint pdf 

of envelope and phase becomes 

n  m f^\ - )( " q(^) (1.3-10) 

where K is a normalization constant. This approach has been used to analyze 

the performance of communications in VLF atmospheric noise [22], with the 

envelope assumed to have a log normal distribution. The marginal distributions 

of the individual quadrature components, P^^l^) and P^gls) follow from the 

joint pdf and we do not have control over their form using this method. 

The second method for constructing a joint pdf is based on 

generalizing the marginal pdf's of the quadrature components. Let the 

characteristic function of the individual quadrature components be 

C(v) = E e ^\  = E e  ^ . (1.3-11) 

A circularly symmetric joint distribution can be assigned to the quadrature 

components by defining the joint characteristic function to be 

C    (v,u) = C AJIT^ . (1.3-12) nc,ns '^'    \     / 

For example, if the quadrature components are Gaussian-Gaussian mixtures, 

then 1 ^ ^     loo 
-^a^y -4a^2 (1.3-13) 

C(v) = (l-e)e      + £ e ^ 

and the circularly symmetric joint characteristic function is 

-ia2(v2+u2)     .1 2(^2+^2)    (1.3-14) 

Cncns^^'^^ = (^-) ^  ■      ^ ^ ^ ' 
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From this assumption it follows that 

1 1 Z 2 

Throughout our subsequent analysis, we shall use the circularly symmetric, 

rather than independent, quadrature assumption. 
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2.0     NONCOHERENT DETECTION IN BANDPASS GAUSSIAN-GAUSSIAN 
MIXTURE NOISE USING CONVENTIONAL DETECTORS 

In this section we examine the effects on detection performance 

that occur as the noise departs from a Gaussian distribution. The detectors 

win be based on the assumption that the noise is Gaussian. 

As we develop these results, several purposes are in mind. First, 

the performance of Gaussian detectors in the non-Gaussian noise environment 

will serve as a useful reference or yardstick for evaluation of the per- 

formance of improved detectors. Second, the results will reveal whether 

the use of multiple samples will overcome the loss in single-sample detector 

performance, so that acceptable performance is achieved in spite of the 

fact that the noise is not Gaussian. Third, by comparing the performance 

of single-channel Gaussian detectors in non-Gaussian noise with that of 

detectors utilizing two channels of data (specifically, a correlator- 

detector), we will learn whether one type of these common detectors is less 

vulnerable to the degradation from non-Gaussian noise than the other. 

2.1     DETECTION FORMULATIONS 

As a particular case of detection of signals in non-Gaussian 

noise, we turn to the problem defined as follows: on the basis of the 

received waveform r(t), 0<t$T, we wish to accept or reject the null 

hypothesis 

HQ: r(t) = n{t) (noise only) (2.1-1) 

when the noise is bandpass Gaussian-Gaussian mixture noise, 

n(t)  = n^(t)coswot - n2(t)sincoot (2.1-2) 
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where fo = ^Q/2.-V is the center frequency of the band, and the joint pdf of 

the quadrature components n^(t), n2(t) at a given instant is the bivariate 

Gaussian-Gaussian mixture pdf 

Pncns^^'^) = 
1-e exp 

a2 + 32 
+ y^ exp - Zal Zi^a'i lol 

;2.i-3) 

Detection occurs when Ho is rejected in favor of the alternative 

hypothesis 

Hi: r(t) = n(t) + Acos[wot + e(t)]. (2.1-4) 

in which the signal amplitude A is constant during the observation interval, 

and the signal phase e(t) is random. Two different assumptions will be made 

about the phase: (a) the random phase is constant ("slowly varying") during 

the observation interval (type 1 signal); or (b) the random phases of samples 

taken during the observation interval are independent (type 2 signal). 

We assume that K samples of r^ and r^, the quadrature components 

of r(t), are taken on the interval (0,T). Under the two hypotheses, the 

joint pdf's of these samples are 

Ho: P^c.rs^^' ^1"°^ = Pnc.ns^^'^ 
(2.1-5a) 

rc,rs (-. ilHi, 1) = P,,^,3(a-lc' A-ls) (2.1-5b) 

where the vector notation signifies 

* In certain cases shown below, the extension of the analysis to amplitude 
variations is possible in a simple manner. The assumption of constant 
amplitude signals is commonly made as a means to simplifying the analysis, 
realizing that in practice variation is almost always observed. 
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1                ^ = [r^(ti), r^(t2),...,r^(t^)] 

1                ^ = [r3(ti), r^{t2),...,r^{t^)] 

1                ^ 
=  [s^(ti), s^(t2),...,s^(t^)] 

= Acose [1, l,....l]  (Type 1) 

= A[cosQi, COS62,... sCosBj.] (Type 2) 

■               ^ = [S5(ti), s^(t2),...,S3(t^)] 

= Asine [1, l,...l]   (Type 1) 

= A[sin9i, sine2,..., sinej,] (Type 2). (2.1-5C) 

■                  The test for rejecting HQ in favor of H^ is to be based on the 

generalized likeli hood ratio (GLR) 

.                           A ( ■                      L (2.1-6) 

I                 We also shall consider the extension of this formula to the 

situation in which two channels of data (from perhaps two sensors are to 

I           be tested for the presence of the same signal. In this case, the GLR becomes 

» 
, li, 02, 62) = A^i^^j' Ai) Ay^(^' i^). (2.1-7) 

assuming that the noises in the two channels are independent, and expanding 

1           the notation of (2 .1-5) and (2.1-6) in an obvious way. 

29 



J. S. LEE ASSOCIATES, INC. 

2.2     PERFORMANCE OF SINGLE CHANNEL GAUSSIAN DETECTORS IN GAUSSIAN- 
GAUSSIAN MIXTURE NOISE 

When the mixture parameter e in the noise pdf (2.1-3) is zero, 

the likelihood ratio (2.1-6) becomes 

K 
A^ (a, e) = E  n  exp 
-       ^ k=l 

2 2 
(a^ - A cosOj^) + (3|^ - A sine^) a^2+g^2 

2ai^ 2.ai^ 

exp KA 
2^ 

K 
E. {expl-^ I (a^ cos e^ + e^ sin 9^)j 

■  (2.2-1) 

assuming the samples (a. , 3.) are independent, 

2.2.1   Forms of the Detectors 

For the Type I signal, the phases {e|^} are all equal, and the 

result of the expectation taken in (2.2-1) is 

A^(a, A) =e><p|-|^} u\^-2^InZT) (2.2-2) 

where lo(') is the modified Bessel function of the first kind and order 

zero, and 

f(-. i) =   Z \^  ■" 
k  \2    /k  \2 

L "k) 
.k=l 

(2.2-3) 

.k=l 

Since the likelihood ratio is monotgnic or directly proportional to 

f(a, e^), testing the likelihood ratio is equivalent to testing f(a, §), 

that is. 
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Hi Hi 
A  (a, B)  < m *=t f(£> i)  <  nz (2.2-4) 
r • 

~ HQ Hg 

The detector based on (2.2-4) is diagrammed in Figure 2.2-l(a). 

For the Type II signal, the phases {e^}  are all independent, and 

the result of the expectation taken in (2.2-1) is 

1 2„f (k=i   \ "I '' k    k ; 
\  (a, 3.) = exp 

= exp i- ^^   + 

When the signal is weak, we can simplify (2.2-5) greatly by using the 

approximation 

to arrive at the equivalent detection test 

^ (aj + 3p  <  n. (2.2-7) 

k=l    .      Ho 

This practical implementation of the test of (2.2-7) is diagrammed in 

Figure 2.2-l(b). 

2.2,2   Single-Sample Detector Performance in Gaussian Mixture Noise 

For one sample (K=l)» the two detectors implement the test 

•"c ^ i = ^' ^ ^' (2.2-8) 
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Figure 2.2-1 Detectors for a bandpass signal in Gaussian noise, 
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where R is the envelope of the received waveform at the sample time. Thus 

instead of quadrature sampling, we may employ an envelope or square-law 

envelope detector. It is well-known that in Gaussian noise, R^ is a constant 

times a noncentral chi-squared random variable with two degrees of freedom 

and noncentrality parameter 

2 , 
2p, Hi true , p= Ml<^\ 

X  = 
0 , Ho true. (2.2-9) 

The performance of the quadrature detector for Gaussian-Gaussian 

noise in terms of false alarm and detection probabilities is found to be 

PpA(n) = PrJR2>nlHo} 

■n/2a2    -n/2a2 2 
=  (1-e)  e + e  e (2.2-10) 

and 

PD(n) = Pr{R2>n|Hi} 

=  (1-e)  Q(A/ai,   /^T^j  + £ Q(A/a2,   ^7^) , 

(2.2-11) 

where n is the detection threshold and Q(a,b) is Marcum's Q-function. 

The effect of the mixture parameters e and V^ = o^/a^  on the false 

alarm threshold for the square-law envelope detector is shown in Table 2.2-1. 

It is evident from this table that for Pp. small (<0.1), the tendency is for 

the first term in (2.2-10) to be negligible, resulting in 

^= -2V2£n (Pp^/e). V^j^ 1, (2.2-12) 
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TABLE 2.2-1 

FALSE ALARM THRESHOLDS 

FOR SQUARE-LAW ENVELOPE DETECTOR (SINGLE SAMPLE) 

PFA 

Gaussian 
Noise 

6AUSSIAN- ■GAUSSIAN NOISE 

£ 

V2= 10 

= 0.1 

V2= 100 
r^/o\ 

V^= 10 
n/af 

£= .01 

V2= 100 

0.1 

0.01 

0.001 

4.50517 

9.21034 

13.8151 

6.8662 

46.0517 

92.1034 

10.3657 

460.5170 

921.0340 

4.7494 

10.9215 

46.0517 

4.7905 

14.5094 

460.5170 
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and the threshold is raised to a value much higher than that for Gaussian 

noise. Therefore, for the same false alarm probability, a higher SNR will 

be required to achieve the same detection probability. Note that if either 

e=0 or V^ = 1, then the probabilities of false alarm and detection become 

those for the Gaussian noise case. 

In Figures 2.2-2 to 2.2-5, the false alarm probability, as a 

function of the normalized threshold n/a\,  is plotted for different values 

of the mixture parameter, e, and the variance ratio, V^: 

z  = (.01, .1, .2, .5) 
(2.2-13) 

V2= (1, 2, 10, 100, 1000). 

It is evident from these figures that for Pp^ less than or equal to the 

mixture parameter e, the threshold is determined by the second term in 

(2.2-10), as noted already in (2.2-12). 

In Figures 2.2-6 to 2.2-9, the detection probability is plotted as 

a function of SNR for the same parametric conditions as described by 

(2.2-13), and for fixed false alarm probabilities of 10" , 10" , and 10" . 

As anticipated, for each value of e, the detection probability decreases 

as V^, the variance ratio, increases, except in some cases for high SNR. 

We observe also that the degradation in performance for PQ>.5 is proportional 

to e, and that in general the amount of degradation is greater for smaller 

values of PpA. the false alarm probability. This result is consistent 

with the fact that the tails of the distribution are extended by the 

contaminating Gaussian noise with variance a|. Even with e as small as 

0.01 (Figure 2.2-6), a loss in detectability of over 4 db is experienced 



EPSILON = 0.01 

NORMALIZED THRESHOLD 
Figure 2.2-2. False alarm probability for Gaussian detector in Gaussian- 

Gaussian mixture noise, mixture parameter e = 0.01. 
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Figure 2.2-3. False alarm probability for Gaussian detector in Gaussian- 

Gaussian mixture noise, mixture parameter e=0.1. 

37 



m 

iff 

!7 
a 

i 

10 

EPSILON = 0.20 

-1 r—1—I   I I I I I 

10^       Id''       10^ 
NORMALIZED THRESHOLD 

Figure 2.2-4. False alarm probability for Gaussian detector in Gaussian- 

Gaussian mixture noise, mixture parameter e=0.2. 
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Figure 2.2-5. False alarm probability for Gaussian detector in Gaussian- 

Gaussian mixture noise, mixture parameter £=0.5. 
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Figure 2.2-6 Receiver operating characteristics for Gaussian detector 
in Gaussian-Gaussian mixture noise, mixture parameter 
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for V^=10; this is the increase in SNR required to maintain, say, 90% 

detection probability as V^ goes from the value 1 to 10. 

For smaller values of Pp. and V^ > 10, we observe in Figures 

2.2-6 to 2.2-9 that the Gaussian detector performance actually improves 

slightly as e increases. 

As we consider next the performance of the Gaussian detectors 

of Figure 2.2-1 in Gaussian-Gaussian mixture noise for multiple samples, 

we shall be interested to learn whether detection losses can be compensated 

by using multiple samples. 

2.2.3   Multiple-Sample Detector Performance In Gaussian Mixture Noise 

The joint pdf of K multiple, independent samples of the 

quadrature components of the input waveform is simply a K-fold product 

of the single sample pdf (2.1-3). Because this pdf has a two-term or 

binomial form, the K-sample joint pdf for the noise only case can be 

wri tten 

^      r   1-e i    "k^+^k^l (     a  2,    S.2) 
n     i —^exp <-  1+    —£-  exp \- -^^—^^ 

k=l    l2nal ( 2af      '       2cjf I       Zo^      ' —c, —s 
-'2 

-     1      fl^V"' (1-)^""" (2.)-^ (af)-K""^ (.1)-^ 
m=0 V'y 

(  ,   K^m 1   nfi ) 

I 2o\      kfo   "i ^1    2ai k^=0  ^2 ^2 t 

(2.2-14) 

This expression conveys the information that the joint pdf consists of 

K+1 terms, each of which is a (weighted) joint pdf for K independent 

Gaussian random variables, m of which have variance af and K-m of which 

have variance af, provided that the indexing or time-ordering of the 

samples {r^^, r^^)  is arbitrary. 
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Another method for writing the multiple sample pdf is to 

consider the samples as conditionally Gaussian: 

^^ 

(a, S) = E 2 
(2up?) 

-K K  a 

-K vf ....v; -^p - X 
k + ^k 

k-1 2^ v^ 
:2.2-i5: 

where the variance multipliers IvM can take the values 1 or °\l^\  = V^, 

that is. 

Pw2 (Y) = (1-e) O(Y-1) + £6(Y-V2) 
^k 

2.2.3.1  Sum and Square Detector 

:2.2-i6; 

First we consider the "sum and square" quadrature detector of 

Figure 2.2-l(a), the GLR for a Type 1 (constant phase) signal in bandpass 

Gaussian noise. The test statistic for this detector may be written as 

z 
^k=l 

ck I 
.k=l 

sk (2.2-17; 

Since, given the variance multipliers |v?i, the quadrature samples are 

independent Gaussian random variables, so are their sums; that is, 

conditionally. 

Z! ^ck " Z ^(^ '^°^®' ^k^^i) " ^\^ ^°^^'   Z^k""!)      (2.2-18a) 
k=l k=l k=l 

t'sk-t.  <^^^"^' i^i) -^ 
k=l k=l 

KA sine, 2_^   v l< (2.2-18b) 
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Therefore conditionally z is a factor times a chi-squared random variable 

with two degrees of freedom: 

\k=i 
l) xH2,x) (2.2-19a; 

with the noncentrality parameter 

K 

X = K2A2M Y.   ^k = W Z 'k' (2.2-1%; 
/   k=l k=l 

using p = A^/2af. Although the detector form is based on constant phase 

and "slowly-varying" signal amplitude A, the performance of the detector 

can be evaluated for time varying amplitude and phase. The modification 

necessary for this evaluation is to interpret the noncentrality parameter 

X  in (2.2-19b) as 

X' = (jA^cose^)     ^(l\sim\]llylal 
L\i,       /    \i,       /■'k 

(2.2-19c; 

or the SNR p as 

M 

>2l 
A, sine 
k   k. 

(2.2-19d) 

Conceivably the physical process giving rise to the non-Gaussian 

noise can introduce dependence among the variance multipliers |v^|. For 

example, at one extreme, slow variation or low bandwith in factors 

affecting the power of a conditionally Gaussian process may allow us to 

consider that v|=vf, k=2, 3, ..., K; that is, the value of V|^ is a random 
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constant. In this instance it can be shown that the detection and false 

alarm probabilities achieved by the sum and square detector are 

P|^(n; P, K) = E^atPi- {z>nlHi}] 

(1-e) QfiJz^,     ^fJ^ 

+ eQ(V2Kp/V2,     Vn/Kafv2  ]        v^^vf;   (2.2-20: 

where Q(a, b)  is Marcum's Q-function, and 

=  (1-e)  exp j- n/2Kof|  +z exp |-    n/2Kaf V^j   . 
i i i '  (2.2-21' 

Another extreme case of the statistical relationship among the 

|v?| is that in which high bandwidth in the variation of the power of a 

conditionally Gaussian process permits us to assume that the |V|^| are 

independent. Then the detection and false alarm probabilities are 

%(n;p, Kl-f (:)(l-.)^-%"q(^ 2K2p /  "^1 
K-m+mV^ '  V K-m+mV-i /' 

m=0 

independent Vj^; (2.2-22) 

and 

Pp^ (n; K) = ^ Aj (i-e)!^-"^ ^^ exp {- n/2at(K-m + mV^)} _ 

;2.2-23) 
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Figure 2.2-10.    Receiver operating characteristics for the sum-and-square 

Gaussian detector in Gaussian-Gaussian mixture noise (e=0.1, V- = 100) when 

multiple samples are used and the noise power is slowly varying. 
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The difference in sum-and-square detector performance due to the 

two different assumptions about the dependence of the variance multipliers 

can be observed by comparing Figures 2.2-10 and 2.2-11, in which e=0.1 and 

V^=100. 

In Figure 2.2-10, the equal (v ^} case is evaluated, showing that 

an improvement in detection holds for this case. A close look at the equal 

{v^} PQ and Pp^ expressions, (2.2-20) and (2.2-21), reveals that 

PQ (n; P, K) = Pp {P'l,  Kp, 1), equal y^; (2.2-24) 

that is, the detectability of the signal is increased by the factor K. Thus 

the single-sample detection losses tabulated previously can be made up by 

using an appropriate number of samples, assuming that the variance is indeed 

constant for the K samples. However, relative to the performance achievable 

in Gaussian noise with the same number of samples, the detectability loss 

remains the same, regardless of the value of K. 

The sharp rise in the curves for Pp^ = IQ"^ in Figure 2.2-10 can 

be explained as follows: the false alarm probability (2.2-21) is dominated 

by the second term, yielding 

n/nf = -2KV2 £n(Pp^/e) = 460K. (2.2--25) 

The detection probability (2.2-20) is due to the second term for small 

SNR-, when the SNR approaches the value at which the first term's Q-function 

becomes 0.5, or 

2Kp - n/Kaf, = 460, (2.2-26) 
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this term rapidly increases from zero to (1-e) = 0.9. For example, if 

K=10 this occurs at p= 23 = 13.5dB. 

The sum-and-square detector performance for independent {v^}, and 

hence independent samples, is plotted in Figure 2.2-11. A very different 

behavior from that of Figure 2.2-10 is observed: for the case of Pp^ = 10 , 

the independent sample performance actually gets worse initially as K 

increases; however, for the case of Pp^= 10"^the detection probability 

increases uniformly with the number of samples K, and is better than the 

results shown in Figure 2.2-10. We conclude that for low P^^, the per- 

formance of this detector is better for independent noise samples, and 

that effects of the non-Gaussian noise can be countered by using multiple 

samples. 

2.2.3.2  Square and Sum Detector        . , 

Next, we consider the "square and sum" quadrature detector of 

Figure 2.2-l(b), the optimum detector for a weak Type 2 signal 

(independent phase samples) in bandpass Gaussian noise. The test 

statistic for this detector may be written as 

Hi 

Z (^ck "-  ik) ^< ^- (2.2-27) 
k=l 
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Conditionally, z is the sum of K weighted chi-squared random variables with 

two degrees of freedom. 

--- , K 

' .. ;;   ^ = -?Z vjx^(2'^k)'^k = 2p/v^ (2.2-28a) 

k=l 

The evaluation of this detector for non-constant signal amplitude involves 

modifying {2.2-28a) by considering 

^k = 2Pk/i'      Pk "     ^k/^'^i  • (2.2-28b) 

Since equally-weighted chi-squared random variables combine, we 

see that unconditionally the probability of detection is 

PD(n;pk)= (1-e) Q^^y/zKo,    ^f^) 

+ z  Q^(V21WV2,Vn/afv7, equal v^; (2.2-29a) 

K-1 

z 
m=l 
Z(m>l-)'"^^^W--<) 

independent v^;    (2.2-29b) 

where Q^ (a, b) is the generalized Marcum's Q-function [24], and 

P (n: p, K) = Pr {o?X^[2(K-m), 2(K-m)pr + a?V2x2[2m, 2mp/V^]>n} 
Dm 

= Q^_^(V2(K-m)p,V^) 

/n/af     ^  \ 
du Pi(u) Q^(V2mp/V2, ^(n-afuj/afV^) ) 

0 (2.2"29c) 
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with 

Pi(u) =^exp|-f - (K-m)p j  -^ 
u/2 
-m)p 

(K-m-l)/2 

Ir y2(K-m)pu 

(2.2-29d, 

In these expressions, we may treat non-constant signal amplitude 

by replacing Kp by Kp', where 

A? 
-iV_k_-JLV—^-1 II 

1^ la\ KAt  1^  '^i 
(2.2-29e) 

in which E is the signal energy and NQ is the equivalent noise spectral 

density in the bandwidth B = 1/At. 

J... Unlike that of the sum-and-square detector (Figure 2.2-10) for 

The performance of the square-and-sum detector for equal {v^^} is 

shown in Figure 2.2-12, for £=0.1 and V^ =100, with several values of 

K and P^ 

the same dependent noise sample case, as the number of samples K increases, 

the detection probability for this detector tends to jump from a small 

value (-Ppn) to a high value at a fixed value of SNR. That is, increasing 

the number of samples does not improve the detectability in terms of 

reducing the required SNR for a given value of Pp.. This can be shown 

analytically as follows: for Pp. < e and large K, the detection 

threshold approaches 

n/a? inverse of /"n/V^ - 2K^ 

^  2/K  > 
PpA/^i 

2V2/K[Xq(Pp^/e) + /i< ], ;2.2-30a) 
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where Q (•) is the Gaussian complementary probability integral and x (•) 

is defined as its inverse: 

Xq (P): Q (xq) = p. (2.2-30b) 

Given this threshold, the detection probability (2.2-29a) for 

large K is approximately 

PQ = (1-e) Q 
n^-2K(l+p) 

. 2/K /l+2^ 
+  eQ n7V^-2K(l+p/V^) 

2/K/l+2o/V^ 
(2.2-31) 

in which the Q-function in the first term is equal  to 0.5 for n'-2K(l+p)=0, 
■■■■'■■ j-   ■ 

or 

p = nV2K -1 

= V2 
X (Pp^/^)    1 

I + _g—Lii— •1, (2.2-32) 

For example, if Pr;^=10' and e= 0.1, then x = 1.28 and the P^ will jump at 

approximately p = 128 = 21 dB for K=20 and V2=100. Although the approximations 

no longer apply, for K=l the value is p = 227 = 23.6 dB, which can be verified 

by examining Figure 2.2-10; in that figure the switching occurs at 

p = 17dB for K=5, which implies that it occurs at p = 17+7 = 24 dB for K=l. 

For Pp.=£ as is the case for the Pp^=10"^curves in Figure 2.2-12, 

the foregoing analysis is inadequate since x (1) = - °°; both terms in the 

probability expression then contribute to the Pp^. Nevertheless from 

Figure 2.2-12 we observe that the switching phenomenon exists, and for this 

case as K increases the Pp. is approximately 0.1=Pp^ until p=6 dB. 
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The performance of the square-and-sum detector for independent 

Gaussian-Gaussian mixture samples (independent |v|[ ) is shown in Figures 

2.2-13(a) and (b) for e =  0.1 and V^ = 100. Pp^ = 10"^ in Figure 2.2-13(a) 

and P(-„ = 10" in Figure 2.2-13(b), and the numbers of samples for which 

{2.2-29b) was computed are K=l, 2,  5, and 10. 

For Prn = 10"^' we observe in Figure 2.2-13(a) that a loss in 
r M 

performance occurs when two samples are used, but for smaller detection 

probability values (Pj, = .5), this loss becomes less as K is increased 

further. 

For P;-» = 10'^, in Figure 2.2-13(b) we see that the detection 

performance for the square-and-sum detector improves uniformly as the 

number of samples increases. 

In both part (a) and (b) of Figure 2.2-13, a (temporary) 

saturation or leveling of the P^  curve is evident. For the case of 

P . = 10"^, this effect can be explained as follows. For large K, the 

central limit theorem suggests that 

Pr |z > n[ = Q 
2Ka2  (l-£ + eV2 + p) 

^2a^/K /l-£ + eV* + 2 (1-e + £V^)p 

(2.2-33; 

where Q( ) is the Gaussian Q-function. For Pp^ = lO" , p=0 in (2.2-33) 

gives for the threshold 

n/a2 = (80.99)/K + (21.8)K, (2.2-34) 

when e  = 0.1 and V^ = 100. Substituting this threshold in (2.2-33) gives 

the approximate detection probability 
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D 
(80.99)/K - 2Kp 

2/K /1000.9 + 21.8p 
(2.2-35) 

Thus we anticipate that Pp. = 0.5 when p = 81/2/K and observe that the rate 

of increase in the detection probability as p increases will start slowing 

down at the "breakpoint" P = 1001/22 = 16.6dB. For K=10, both these effects 

are observed at or about these values of SNR, even though ten samples are 

too few to invoke the central limit theorem. 
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2.3       PERFORMANCE OF CORRELATION DETECTOR IN BANDPASS GAUSSIAN-GAUSSIAN 
MIXTURE NOISE 

Representative of the class of multi-sensor detectors is the 

bandpass correlator diagrammed in Figure 2.3-1. Two bandpass waveforms 

Ui(t) and U2(t), where 

u.(t) = A. cos (to-t + 9.) + n.(t), i=l, 2; (2.3-la) 
1 I w .      1        I 

= u^.(t) cos m t + u .(t) sin 0) t, (2.3-lb) 
C I C      SI V* 

are multiplied, then lowpass filtered to produce the output y(t). For 

the ideal assumption of zonal lowpass filtering, the output can be expressed 

as 

y(t) = ^|u^ (t) u^^(t) + Ug^(t) u^^(t)}. (2.3-2) 

The distribution of y(t) for Gaussian.noises n^(t) and n2(t) 

was shown in [28]. Briefly, for that case the vector of quadrature components 

u = (u , u , u , u ) (2.3-3) 
—     Ci        Si   C2   52 

is multivariate Gaussian with mean 

m 
-u 

T 
(A;LCOS GJ, A^sin Q^,  A2COS 62. A2Sin 62)      (2.3-4) 

60 



INPUT    I 
BANDPASS 

FILTER 

INPUT   2 
BANDPASS 

FILTER 

u,(t) ° 8,(t) + n,(t) 

ZONAL 
LOWPASS 
FILTER 

UgCt)" SgCt) + RgCt) 

y(t) 

Figure 2.3-1. Bandpass Correlator 



J. S. LEE ASSOCIATES, INC. 

and covariance matrix 

a"- 
a 

0 ^Vb rcj a. 
a b 

0 
a a b a b 

^^a-^b ■^^a^b ^l 0 

^^a^^b ^Vb 0 4 

(2.3-5) 

In (2.3-5) a^ is the variance of ni(t), a? is the variance of no(t), 5 is 
a -^    D 

the correlation coefficient between quadrature components which agree in 

phase and ±r is the correlation coefficient between components which are in 

phase quadrature. 

Given these definitions, in [28] is shown that the correlator 

output y(t) is equivalent to the difference between two independent scaled, 

noncentral chi-squared random variables with two degrees of freedom: 

y - kix2(2; Xi) - k2x2(2-, X2) (2.3-6) 

In this equivalence, we have 

ki  = o^a^i  /rT2+ 5)/4 

k^ = o^o^{/[^^ - s)/4 

(2.3-7a) 

(2.3-7b) 
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and the noncentrality parameters are given by 

Pi + P2 + 2/1-r^ /piP2Cos(6 1  - 82) + 2r/piP2 sin(Gi   - 62 ) 
^1 = 

/1-r^ (/1-r^ + ?) 
(2.3-8a) 

Pi + P2 - ZA-r^ >^PiP2 cos(Oi - S2) +2r/pTP2 sinCe^ - 62) 
X2 =     (2.3-8b) 

using the channel SNR's defined as 

Pi ^ Af /2a2, P2= A2/2a2 (2.3-9) 

When the bandpass spectrum of n^Ct) and n2(t) is symmetric, the 

cross-quadrature correlation coefficient r is zero. If we assume that this 

condition holds, and also that the correlator delay shown in Figure 2.3-1 

is such that e^ = 82 . then the parameters in (2.3-6) to (2.3-8) become 

ki = a^a^il +  5)/4, k2 = a^a^H  -  5)/4        (2.3-lOa) 

. Ai = ('^+ v^Vd + C) (2.3-lOb) 

2. . 

X2 = (^ - ^ /(I - c) 

2.3.1     Analysis for Gaussian mixture noise 

The assumption of Gaussian-Gaussian mixture noise for n;L(t) and 

n2(t) can be treated by considering the covariance matrix (2.3-5) and the SNR's 
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Pi and P2 (whose values follow from the covariance matrix) to be random 

variables. That is, 

K =K   with probability E ^. (2.3-11) 
m 

For example, we may consider the case that the parameters, with 

probability n^ = 1-e, take the values 

(ffg, a^>  r, c) = (a^, a^,  0, 0), prob. = 1-e; (2-3-12a) 

and with probability TI2 = z, 

(og,  a^, r,  5)  = (a^  ,  02.  0,  5J(T)),  prob.  = e. (2-3-12b) 

The parameter values in (2.3-12a) reflect the assumption of 

a "background" Gaussian noise situation with equal noise power at the two 

inputs and no correlation. The parameter values in (2.3-12b) are suggestive 

of a combined background plus "impulsive" Gaussian noise with equal power 

a| = V^af at each input, but with a finite correlation between the noise 

inputs. This correlation is further suggested in (2.3-12b) to be a function 

of the relative delay of the inputs, or the direction of arrival of the 

impulsive noise, due perhaps to discrete events located in a specific 

direction relative to the two sensors whose waveforms are being correlated. 

2.3.2     Probability integral 

For cases such as given in (2.3-12), where the noise powers are 

equal at the two Inputs and it is also assumed that the signal amplitudes 
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are equal (Ai=A2), then the probability that the correlator output exceeds 

a threshold is [29] 

Pr{y > n} = (1-e) Pi^Cy > n; a^ = a^^ = ai, C = r = 0, Ai = A2} 

+ e Pr{y > n; a^ = CT^ = a^V, r=0, gfO,  A^ = A2} 

= (1-e) f(n; P, af, 0) 

+ e f  (n/V^; p/V^ a?V2, 0 (2.3-13) 

where 

f(n; P. a^ d = Pr j ^^ x^(2; ^ - ^^ X^(2; 0) 

= Pr|y2/2- -^ > ^ Y2(2) +  ,fn . I Hrjx \^, 1+^^ > 1+^    X U; -^ a2(l+c) I 

> n 

(2.3-14a) 

The probability above may be solved in terms of Marcum's Q-function, yielding 

f ( n ;  p»  a^,   z) Wi+5  'V 1+5 /' 

(l-£) exp 2n/g^ 
1-? 

M 
i+?   'V 1-5 

(2.3-14b) 
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2.3.2.1 False Alarm probability 

For the SNR, p = 0,  (2.3-14)  becomes 

f(n; 0,a2, 5) = exp j - ^^ 

(1-0 
2   ^^p n^ 

= li±£l 2n/a^ 
2        ®^P   I      1+5 

(2.3-15) 

Thus the false alarm probability for the case considered is 

P„ = (l-e).ie-'"/"U..ii;ii 
FA 

exp 2n/a^V^ 
1+5 

(2.3-15) 

where 5 is the correlation coefficient of the sum of background and 

"impulsive" Gaussian noise. We observe that (2.3-16) is very similar to 

(2.2-10), the Pp. for the quadrature detector, with the correlation coefficient 

5 acting as V^, that is, extending the threshold. This influence of 5 can be 

seen in the thresholds given in Table 2.3-1. 

2.3.2.2   Detection performance 

By substituting (2.3-14b) into (2.3-13) for nonzero SNR p, we 

obtain the correlation detector's probability of .detection: 

Pp(n; p) (1-e) I Q(2v^, 2/;^) 

- \   exp {=p + 2n/afj Q(/2F, 2V2^V^)| 
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GAUSSIAN 
NOISE 

(e=0^ 
n/af 

GAUSSIAN-GAUSSIAN NOISE 

£ = 

v2=io 
n/af 

0.1 

7^=100 

£ = 0 

V2=10 

.001 

7^=100 Correlation 
Coeff., 5 ^A 

0.1 0.8047 1.0143 1.0880 0.8214 0.8249 

0.0 0.01 1.9560 8.0472 80.4719 2.1478 2.2756 

0.001 3.1073 19.5601 195.6012 8.0474 80.4719 

0.1 0.8047 1.0546 1.1389 0.8239 0.8275 

0.1 0.01 1.9560 9.3761 93.7611 2.1819 2.3256 

0.001 3.1073 22.0403 220.4033 9.3761 93.7511 

0.1 0.8047 1.2552 1.4179 0.8344 0.8382 

0.5 0.01 1.9560 15.1118 151.1177 2.3484 2.5956 

0.001 3.1073 32.3812 323.8116 15.1118 151.1177 

Table 2.3-1        False Alarm Thresholds for Correlation Detector 
(Single Sample) 
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+ e V^) 

(2.3-15) 

For e=0, this expression reduces to the Gaussian noise case. 

The performance of the correlation detector in uncorrelated 

Gaussian noise is given in Figure 2.3-2 as a reference. When compared to similar 

cases for the (single channel) envelope detector as presented, for example, 

in the V^ = 1 curves of Figure 2.2-7, we observe that the correlation detector 

achieves a 50% detection probability for 2.5 to 3.0 dB less SNR than required 

by the square-law envelope detector. However, the correlation detector uses 

two channels and thus has twice the signal energy to use for detection. Thus, 

in Gaussian noise the correlation detector may be said to be -0.5 to 0.0 dB 

worse than the envelope detector in Gaussian noise. 

Figures 2.3-3 and 2.3-4 show the detection performance of the 

correlation detector in bandpass Gaussian-Gaussian mixture noise (e = 0.1) 

for V^ = 10 and V^ = 100, respectively. We observe from these figures that 

positive values of the correlation coefficient 5 in (2.3-15) degrade the 

detector's performance, except for high values of SNR and relatively high 

false alarm probability such as Pp^ = 0.1.  We also note that the performance 

is degraded in proportion to values of the variance ratio, V^. 

How the correlation detector performs relative to the square-law 

envelope detector in the same Gaussian-Gaussian mixture noise is learned 

by comparing Figures 2.3-3 and 2.3-4 with the previous figures, such as 2.2-7. 
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For 50% detection and V^ = 10, we find that the correlation detector (after 

subtracting 3dB because of the two channels used) effectively requires 

0.5dB less SNR for Pp.=10-i and 1.4dB less for Pp^=10-^. When V^ = 100, 

the correlation detector in effect requires 2.4dB less for Pp^=10-i and 

1.6dB less for Pp.=10~^. Thus in this type of noise the correlation 

detector seems to have a slight advantage over the conventional noncoherent 

Gaussian detector when the noise is uncorrelated (5=0). However when 

the correlation is positive (? > 0), this advantage is decreased. The 

interpretation of this fact seems to be that the correlator, in using 

two sensors, acts as a two-element array. When this array is "steered" 

toward a signal source such that 61=62 and such that the (directional) 

impulsive Gaussian component is either not correlated at the sensors 

(effectively at 90° or 270° bearing) or negatively correlated, the effect 

of this interference is lessened. 
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3.0 OPTIMUM NONCOHERENT DETECTION IN BANDPASS GAUSSIAN-GAUSSIAN 
MIXTURE NOISE 

In the previous section we considered the performance of detectors 

which are designed for Gaussian noise, when the actual noise environment 

is a Gaussian-Gaussian mixture. Departure from Gaussian conditions was 

shown to result in a loss of detector performance whose severity depends 

on the mixture parameter e and the variance ratio Q\h\  = V^. It was shown 

also that using multiple samples to decide whether a signal is present can, 

but does not necessarily, improve the detector's performance, depending 

on the time variability of both signal and noise. 

Now we consider the performance attainable by optimum detectors 

for signals in bandpass Gaussian-Gaussian mixture noise, that is, detectors 

based on the generalized likelihood ratio, and describe how that performance 

depends on knowledge of signal and noise parameters. 

3.1 NON-GAUSSIAN DETECTOR FORMULATION 

As a particular case of detection of signals in non-Gaussian 

noise, we turn to the problem defined as follows: on the basis of the 

received waveform r(t), '0<t<:T, we wish to accept or reject the null 

hypothesis 

HQ: r(t) = n(t) (noise only) (3.1-1) 

when the noise is bandpass Gaussian-Gaussian mixture noise, 

n(t) = nj,(t)coscoot - n^(t)sinu)ot (3.1-2) 
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where fo = WO/2TT is the center frequency of the band, and the joint pdf of 

the quadrature components n^(t), n^Ct) at a given instant is the bivariate 

Gaussian-Gaussian mixture pdf 

Pncns^"'^) = 2^^^P 2af 2TTO2 
exp 

i2 + 32 
(3.1-3; 

Detection occurs when Ho is rejected in favor of the alternative 

hypothesis 

Hi : r(t) - n(t) + Acos[coot + 9(t)], (3.1-4; 

in which the signal amplitude A is constant during the observation interval* 

and the signal phase e(t) is random. Two different assumptions will be made 

about the phase: (a) the random phase is constant ("slowly varying") during 

the observation interval (type 1 signal); or (b) the random phases of samples 

taken during the observation interval are independent (type 2 signal). 

We assume that K samples of r^ and r^, the quadrature components 

of r(t)5 are taken on the interval (OJ). Under the two hypotheses, the  , 

joint pdf's of these samples are 

(3.1-5a) 

(3.1-5b) 

where the vector notation signifies 

* As noted in Section 2, detector performances can be evaluated for non- 
constant signal amplitudes in a straightforward manner. However, we 
continue to assume constant amplitude in detector formulations, in 
order to simplify the analysis somewhat. 
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I^ = [r,.(ti), r^(t2),...,r^(t^)] 

II5 = [r^it^], r^{t2),...,r^{t^)] 

s = [s (ti), s (t2),...,s ftj] —c c^^K' 

(3.1-5C) 

= Acose [1, 1,...,1]  (Type 1) 

= A[cosei, cose2,... ,cose|^] (Type 2) 

s. = [sjti), s (t2),...,s ftj] -s s^'K' 

(3.1-5d) 

Asine [1, l,...l]   (Type 1) 

A[sinei, sin82,..., sine|,] (Type 2] (3.1-5C) 

The test for rejecting HQ in favor of Hi is to be based on the 

generalized likelihood ratio (GLR) 

^e{Prc,rs^^'^|Hi'4 ' 
A, (a, A) = — (,^g[Hp) 
—        ^rc,rs ——' "' 

(3.1-6; 

3.1.1 Conditional Gaussian Approach 

The noise pdf (3.1-3) for a single sample may be viewed as the 

average over the variance of a conditionally Gaussian pdf. Let y^= a^/al 

be a variance multiplication factor; then (3.1-3) can be understood as 

Pncns^^'^' ^^ 
1       / a^+S^ 

0 2T7T exp ' 
'1' 2v^a^ 

(3.1-7a) 
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with 

PyiT) = (1-£)6(Y-1) + £ 5(T-V^); V =  -^ :3.1-7b) 

Extension of this concept to multiple samples takes the form 

Pncns^^'^) 

o   2 N ~K af + 
k 'I 

V_   v^v^...,^ 

k=l ^A^\ 
(3.1-8a) 

with 

M 

Py2(T) I^.*(l-^)' I m 
m=l m=l 

(3.1-8b) 

Using this form, the expectation of the H^ joint pdf over the signal 

phase becomes 

,|p,c,rs(^'^l"i'4 

= EjE 
2i^o\) •K -I 

. k=l 

aj^-AcosBi^)^ + /s,^-AsinBi^)^ 

2^1^ 
J)) 

(2-!)' 
Mv2v2...v2  ^^P -I 

k=l 

a2 + e2 + A2 

2v^^^ 
k 1 

X E^{exp ^I 
k=l 

a|^cosej^ + Sj^ sine^ 
(3.1-8C) 
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3.1.2  GLR For Constant Signal Phase 

For type 1 signals, the above operations yield 

2N-K 
2iTa z 

k=l 

a2 + 8| + A2 

'\ 

\ ^.  Z^ Ml 
,k=l .k=l 

(3.1-9) 

With this result the GLR becomes 

A^(a,i) = Z 
^01=1 

^"'^^S^ .V T- exp 
Km 

Z 
k=l 

11^ 
2V2 CT^ 

km 1 

z 
,m=l 

^^"W?^ 
exp 

Km 
-Z 

k=l 
2v2 a2 

km 1 

X I, V£ "^^ v?~ z 
.k=l 

km 
(3.1-lOa) 

where 

= ^W^ (a,,B_) A^(a,3.), 

m=l 

(3.1-lOb) 
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W„(a,6) 

C   fv?_,v2 
m\ Im 2m■■ ■  km 

exp -   I 
(3.1-lOc) 

>     (numerator) 

m=l 

and 

A^(a.i) = exp -I 
k=l 

A2 
2a2v2 

^ km 

"k \ , / V-  h m,iiL km 

= exp -p 

k=l 

-2 
km 

2p I^h   Zv 
Vk=l .k=l 

^k 
2 
km 

(3.1-lOd) 

using p = A^ /gaf  . 

3.1.3   GLR For Independent Phase Samples 

For the Type 2 signal, each 9. £(0, 2IT) is assumed to be independent^ 

yielding the H^ joint pdf 

K  /2.a2)-i 

P^ r (2L'i;A)= E^2l I I   w2   exp - 
-c,-s k=l [      2i'^   J !o [^V"^^' ^^ 

(3.1-11) 

and the GLR 

E^2{p^ r (a,e.;A|v2)} 

(3.1-12a) 
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z ^'Li™-1™"^ I 
k=l 

"k ' 'k 

M 

"^^m'2m---^Km 
exp -I 

a2  +   e2  + A2 

k=l ■^^s?r k=l 'i^k'f^: 
(3.1-12b] 

Y \(^'i) ^m^^'^)' (3.1-12C) 

m=l 

with W (a,3.) given in  {3.1-lOc), and 

A^(a,3) exp I 
k=l 

^^!^ k=l rkm    V ^k^^k 
(3.1-12d) 

exp z -p   2^   V 

k=l 

-2 
km n'"(5v^ e^    . (3.1-12e) 

3.1.4 Example 

For example, let K=2. Then there are M=2 =4 possible variance 

vectors y^= Km'im" '''^Mm 

y? = (1, 1), vi = (V2 1), 7^3= (1, \^, v.^ = (V^ \^)   (3.1-13a; 
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with probabilities 

C,= Pr{v?=v^}  ;m=l, 2,...,M-2^ (3.1-13b) 

In this case, the numerator and denominator of the GLR become 

TiT exp 
af+3f+ a|+e| + 2A2 

2a2 
/ai + a2V S1 + 62Y 

Tzr- exp 
^2°l 

af + gf + A^      a| + 3| + A^ 

"2^ 2a2 

/3i       SoX^ 

+    7  o    exp 
a^ + Bf + A2       a| + e| + A^ 

2a2 2a 

Sl ^2' 

1        ^2 

and 

+ ^exp 
af + 6f + ct2 + e| + 2A2 

2^ 

>1 ^ P2 

~^  

(3.1-14a) 

exp 
af + 5f + a2 + 6t 

1^ a|af exp 
Ct2 + a|+ e| 

1^ 1^ 

^t<^2 
exp 

af+ef     a^ + e| 
Tof 7^ + ^- exp 

(3.1-14b) 

80 



J. S. LEE ASSOCIATES, INC. 

3.2     EFFECT OF VARIANCE DISTRIBUTION ASSUMPTIONS 

So far we have not specified the joint pdf P^2(x)' except to 

describe it in {3.1-8b) as taking discrete vector values {v^}> possibly 2 =M 

values since each noise sample has a discrete variance multiplier pdf with 

two possible values (1 or V^), The joint pdf should reflect the behavior 

over time of the non-Gaussian noise process, which we are modelling by 

a bandpass Gaussian-Gaussian mixture process. 

For example, at one extreme we may say that the probabilities 

C^ of (3.1-8b) are 

Ci = 1  C„= 0, m> 1. (3.2-1) 

This corresponds to a single variance o^v| = a2 for all the samples, or, 

in effect, Gaussian noise. The GLR (3.1-10) then becomes 

A^ (a,3.) 
-KA2/2a2 

e       lo 

[3.2-2: 

As illustrated previously in Figure 2.2-l(a), implementation of this Gaussian 

GLR for the type 1 signal requires separate summing of samples (integration) in 

the two quadrature channels, then forming the combination of the squares of 

these sums and comparing this quantity to a threshold. For the type 2 signal, 

the combining of the squares takes place before summing, as shown in Figure 

2.2-l(b). 

3.2.1 Slowly-varying Noise Power, 

Another limiting case is described by C^ 

m 7^ 1, M. That is. 

1-"' S =" ■' ^m = °' 
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+ £ 6[Y - (V2 V2...,V2)]; (3.2-3; 

the CT^v^ are all equal to a^ with probability 1-e and all equal to a^ with 

probability e. This case corresponds to a "slowly-varying" non-stationary 

Gaussian noise model with two possible variances. For this case, the GLR 

is (Type 1 signal) 

A^(a.,6_) 

^l -  1-e sCw = e 

= [1- W(a,B)]e 
■KA2/2a 

k=l  /  \k=l 

+ W(a,3) e 
-KAV ̂oi 

(3.2-4a) 

where 

-2K 
e CT2  6xp 

W(a,3) = 
-?^.i;(»^^^^ 

(l-e)ai  exp 
^ 

K 

k=l 
^k * ^k 

+ e a 
»2K 

exp' zsi 
k=l 

(3.2-4b) 

We note that the noise samples for this slowly-varying nonstationary model 

are not independent, although they are uncorrelated. As shown in Figure 3.2-1, 

the appropriate detector is a modification of the detector for Gaussian noise. 
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Figure 3.2-1      Optimum detector for sinusoidal   signal   in slowly-varying Gaussian-Gaussian 
mixture noise. 
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3.2.2   Independent Noise Samples 

Independence of (a, , 3^) quadrature sample pairs implies the 

following set of probabilities in the pdf for the variance vector: 

. Ci = Pr{v^ (1,...,!)} = {l-ef 

C2 = Pr{v^= (Vn,...!)} = eil-ef-'^ (3.2-5) 

CM.'I = P^{v2= (V?...,V2 1)} = e^-^(l-e) 

CM = P^^v2= (V2V?...,V^} = e K 

In general, 
w     K-w 

C = e "" (1-e)   "^ (3.2=6a) m 

where w is the number of one's in the binary representation of (m-1): 
m 

w = weight[(m-l)2]. (3.2-6b) 

We observe that direct implementation of the GLR (3.1-10) for the 

case of Type 1 signal and independent, multiple samples appears to be 

undesirable for numbers of samples of appreciable size, since the number of 

separate LR's A ( ) in (3.1-lOb) grows exponentially with the sample size 

(M = 2"^). 

For Type 2 signals and independent noise samples, the weighting 

concept expressed by (3.1-12) becomes cumbersome, since it is simpler to 

express the GLR as the product of single-sample GLR's: 

A^ (a, &) =        n  A(a, , &.), (3.2-7a) 
L k=l   ^  ^ 
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where 

.2   o2 

A(a , 6 ) 
k  k 

(l-e)ai" exp 
^l  . A2; 

'k +__K + 

-I ^ a?  + &l 

-2 
+ e 02    exp 

"U «U A^ 
2(j| 

^^ ? + s? 

(l-£)ai^ exp 
-k ^ ^k 

2^? 
+ e a2 exp 

i2   fl2' 
'k + ^ki 

2o2 

(3.2-7b) 

The implementation of (3.2-7) can be accomplished with accumulators, 

as illustrated in Figure 3.2-2, since the likelihood ratio test is 

equivalent to 

K 
H, 

log A I. log A{a|^, S^)        <    n' 

H„ 

(3.2-8) 
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mixture noise samples. 
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3.3 PERFORMANCE OF SINGLE-SAMPLE DETECTORS 

Before evaluating the performance of detectors based on the GLR 

for multiple samples (K>1), in this section we evaluate the detection 

performances of the GLR and other detectors for a single sample pair of 

quadrature components in order to develop an understanding of the non- 

Gaussian detection problem. For a single sample, the Type 1 and Type 2 

signal phase models are the same. 

3.3.1 Form of GLR Detector 

For one sample (K=l), the GLR in (3.1-10) becomes 

M^c'^)= h^l^c'^)] 
-AV2a^ 

e     lo fi Y c 

where 

W i^c'^ 

-A2/2a2 
+ W(r^,,rJ e     IQ a, V ^2 + p2 C   S 

(3.3-la) 

e 02    exp 2a^ 

c  s 
(1-s) a-^exp --^^ + e 02^ exp 

c  s 
1^ 

(3.3-lb) 

We observe that the GLR is a function of the envelope only, so that its 

implementation involves formation of x= R^ = r^ + r^, followed by a nonlinear 

function: 
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A^ = f(x; e, V2, a2, p) 

(l-e)V2 exp I- -^ - p|  lo(^^^ai) + e exp |- -^(-^   + ^\  IQ ( /Z^a^V^) 
I  Zaf    I I V2\2af   /) 

(l-e)v2 exp ■  + e exp 
2af 2afv2 

(3.3-2a; 

2 

using        V^ = — and p = —— « (3.3-2b; 
af 2af . 

This function is parametric in signal as well as in noise parameters. To 

illustrate the influences of the various parameters, plots of (3.3-2) are shown 

in Figures 3.3-1 to 3.3-6. In each figure, £ and V^ assume given values 

while p is the parameter indexing the family of curves, which are plotted 

as functions of x/af, the squared envelope sample value normalized by the smaller 

of the two mixture noise powers. 

The curves in Figures 3.3-1 to 3.3-6 show that the form of the 

detector for this type of non-Gaussian noise is very dependent on the a_ 

priori value of p, the SNR which pertains when the signal is present. This 

behavior is significantly different from the Gaussian case (single sample) 

in only one respect: the characteristic is not monotonic. What is meant 

by this statement can be explained as follows: 
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-Figure 3.3-1. Likelihood ratio for Gaussian-Gaussian mixture noise 

(e =0,01, V2 =10), parameterized by SNR. 
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Figure 3.3-2. Likelihood ratio for Gaussian-Gaussian mixture noise 

(e=0.01, V2 = 100), parameterized by SNR. 
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Figure 3.3-3. Likelihood ratio for Gaussian-Gaussian mixture noise 

(e=0.01, V2=1000), parameterized by SNR. 
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Figure 3,3-4. Likelihood ratio for Gaussian-Gaussian mixture noise 

(e=0.1, V2=10), parameterized by SNR. 
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Figure 3.3-5. Likelihood ratio for Gaussian-Gaussian mixture noise 

(£=0.01, V2 = 10), parameterized by SNR (detail of Figure 3.3-4). 
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Figure 3.3-6. Likelihood ratio for Gaussian-Gaussian mixture noise 

(e=0.1, V2 = 100), parameterized by SNR. 
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Even in the Gaussian case, straightforward formulation of the 

GLR gives a function which is dependent on SNR, namely 

A(x;p) = e'^Io (^ /2^). (Gaussian GLR)    (3.3-3) 

The false alarm probability for this case is 

Pp^ = Pr je"P lo (^ /2F3r) > x|Ho = Pr x> n (a,p) JHo ,     (3.3-4) 

since A(x;p) is monotonic. That is, the probability that the GLR is greater 

then some threshold x is entirely equivalent to the probability that R^=x is 

greater than another threshold, 

n(a,p) = f^ W  (ePx(p))j\ n>0,       (3.3-5) 

using the notation IQM-) to indicate the inverse of' the function Io( ). In 

Neyman-Pearson detection, the Pp^ is fixed at some value a. This in turn fixes 

n(CT,p) = n (a) for all values of p. Therefore, in the Gaussian case no matter 

what the SNR is, the receiver decision is based on comparing x to the false 

alarm threshold n . The same statement is true for all GLR's which are monotonic a 

functions of x. It follows that the single-sample detection probabilities for 

all decision variables which are monotonic functions of x are also equal, since 

PD = P^ 
f(x;p.cj) > X (p,a)|Hi Pr x>n (a)|Hi      (3.3-6) 

for all of them. Now, as illustrated, in Figures 3.3-1 to 3.3-6, the GLR for 

Gaussian-Gaussian noise is not monotonic; consequently, the inverse mapping 

of the GLR to x yields false alarm thresholds which depend on the SNR. 

A further description of the dependence of the detector structure 

on the a priori SNR, p, is provided by the following considerations. Suppose 

the desired false alarm probability is Pp;\=ct; for monotonic GLR's this require- 

.ment is equivalent to x> n with probability a. But for non-monotonic GLR's 

the requirement in general is 
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a = Pr |A(X;P) > A(p)j 

= Pr jni(p) < X < n2 (p)}  + Pr j x > njlp)} ,   (3.3-7) 

as illustrated in Figure 3.3-7a; the region of x corresponding to A>x involves 

three thresholds. However, for moderate p values, the non-monotonic behavior 

of A(X;P) is confined to a certain region of (A,x) as shown in Figure 3.3-7b, 

and if the quadrature detector false alarm threshold n^ (Table 2.2-1 and Figures 

2.2-2 to 2.2-5) falls outside this region (n < n^  or n^ > n^ in Figure 

3;3-6), the performance of the GLR receiver is the same as for square-law 

envelope detector. For large a priori p, then we expect the non-Gaussian GLR 

to yield the same performance as the square-law envelope detector. 

Implementation of the GLR for a single sample can be performed in 

concept using the configuration diagrammed in Figure 3.3-8. This implementation 

approach makes use of the mixture form of the GLR discussed in Section 1.2.3. 

We observe that two function generators are required, one for the parametric 

likelihood ratio and one for the weighting function. It is also clear from 

the diagram that the a priori information required consists of the parameters 

of, e, V2, and p. In practice these parameters may be imperfectly estimated; 

however, for the present we shall assume that they are known or estimated 

precisely. 

3.3=2    False Alarm Probability 

The generalized likelihood ratio (3.3-2) depends on the SNR p in 

such a way that an equivalent statistic not parametric in the SNR does not 

exist for testing the hypotheses H^ (signal present, with given SNR) against 
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the hypothesis HQ (noise only). That is, a uniformly most powerful (UMP) 

test statistic does not exist for this problem {[19], p. 91). Therefore it 

is necessary to distinguish between an a priori or assumed SNR, which we 

shall denote by pg, and the actual SNR, which we continue to denote by p. 

With this understanding, the false alarm probability for bandpass 

Gaussian-Gaussian mixture noise can be expressed by 

Pp^ = Pr {A^(x; PQ) > X1P=0} 

Pr {x £ R . (X, Po)| P=0} '3.3-8] 

where x is the sampled envelope-squared, X is a threshold for the likelihood 

function; and R (X,PQ) is region for x defined by x and pg. As explained 

previously with the help of Figure 3.3-7, this region involves either one 

threshold or three thresholds: 

\  (^,Po)    =   ^ 

X > m, n = A'    (X; PQ) single-valued; 

(3.3-9) 

m <x < n2> X > nsi 

n = A''^ (X; PO ) multiple-valued 

Thus the single-sample detector may be implemented simply by comparing the 

squared-envelope sample value to the threshold(s); it is not necessary to' 

implement the GLR directly, as diagrammed in Figure 3.3-8. 
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(3.3-8) 

where 

Explictly, the false alarm probability is, using (3.3-9) in 

PpA = PQ (ni),     n = A"^ (A; PQ) single-valued;      (3.3-lOa: 

= Po (ni) - PQ (nz) + Po (ns), 

n = A'-^   (X; Po) multiple-valued;        (3.3-lOb) 

Po  (n)  ^  (1-e)  e-^/2a2_^^ ^-r^/^o\^\ (3,3_n) 

Since Po(n) is identical to the false alarm probability for the Gaussian 

detector (2.2-10), we can observe from (3.3-10) that the Pp^ for the optimum 

detector is, for the same threshold ni, less than or equal to that obtained 

using the Gaussian detector. It is less when m falls in the non-monotonic 

region of the likelihood ratio, and equal, otherwise. This interpretation 

of (3.3-10) is confirmed by the curves shown in Figures 3.3-9 to 3.3-12. 

Figures 3.3-9 and 3.3-10 give the false alarm probability for 

the SNR-dependent GLR when e = 0.01 and PQ = 0 dB and 15 dB, respectively. 

In order to compare with previous results, we have plotted Pp^ vs m, 

the smallest of the thresholds when there are more than one. These two 

figures correspond to the case shown previously in Figure 2.2-2 for the 

Gaussian receiver. The most obvious effect seen in the new figures, as 

compared with the old, is that the false alarm thresholds are reduced by 

orders of magnitude. The effect is especially pronounced for high SNR; 

the sudden decreases in Pp. as the threshold increases occur when the 

threshold \  = A"\ni;Po) begins to fall in the non-monotonic portion of the 

GLR characteristic (compare Figures 3.3-3 and 3.3-10). 
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Similar results for s = 0.1 are given in Figures 3.3-11 and 

3.3-12 for Po = 0 and 15 dB, respectively. These may be compared to the 

Gaussian detector's false alarm probability as shown previously in 

Figure 2.2-3, and the threshold values for which the sudden decreases in 

Pp. occur can be identified with the non-monotonic GLR behavior for e = 0.1 

given in Figure 3.3-7 for pg = 15 dB. 

3.3.3 Detection Performance. 

For fixed Pp. and assumed or a priori SNR value PQ, the probability 

of detection for the optimum detector in Gaussian-Gaussian mixture noise 

can be written ' 

PD= PD(pi PpA' Po) 

= Pr{A^(x; Po)>X^|p?'0} (3.3-12) 

where X    is defined by the constraint 
a ■       '. 

Pp. = Pr{A^(x; Po)>A lp=0}=a. (3.3-13) 
rA      r    "  a 

As discussed in the previous section, the event of the likelihood ratio 

A (x; Pg) exceeding some threshold A is equivalent to the squared envelope 

X being in some region R (x , pg), which can be defined by a single threshold 

n or by three thresholds (m, n2> ns), depending on whether the GLR is 

monotontc at A = X  .    Therefore the Pn can be calculated by the expression 
r   a u 

PQ "" ^lip'^  "^i) , ^ = ^"^ (^"' Po) single-valued; (3.3-14a) 

= Pi(p; m) - Pi(p; nz) + Pi(p; ns), 

n = ^~'^(^ct' Po^ multiple-valued;       (3.3-14b) 
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where 

Pl(p; n) ^ (1-e) Q(/2^, 47^) + e:Q(/2^7V^, ^n/af V^),      (3.3-15) 

and Q (•, •) is Marcum's Q-function. 

3.3.3.1 Results for known SNR. 

The best detector performance can be expected when the a_ 

priori SNR, pg, is correct, that is, equal to the exact SNR, p. Calculations 

of this best performance were made using (3.3-14); since we assume that 

p = PQ, different false alarm thresholds were obtained for each value of SNR. 

(The computer program used is listed in Appendix 3A.) For e =  0.01, the 

detection probability for these assumptions varies with p as shown in Figure 

3.3-13. In this figure the Pp is shown for Pp^ = 10"-^, lO"^ and 10"\ and 

for V^ = 1, 10, and 100. For V^ = 1, the noise becomes Gaussian and GLR reduces 

to the optimum Gaussian detector, so that we can observe from the V^ 7^ 1 curves 

the effects of the non-Gaussian parameters z  and V^, 

The comparable performance results for the single-sample Gaussian 

detector were shown previously in Figure 2,2-6. In comparison with those 

results, we observe the optimum detector in Gaussian-Gaussian mixture noise 

for e = 0.01 performs about as well for (a) Pp^ = 10"-^, and (b) V^ = 10 and 

Pp. > .5. For Pp. < .5 a great improvement is accomplished, particularly 

as V2 increases. For example, in Figure 2.2-6, we find that an SNR in excess 

of 20 dB is required for \l^  = 100 to achieve Pp^ = 10"^ and P^ > 3xl0"^ 

while in Figure 3.3-13, a Pp. of 0,5 can be achieved for the same Pp^ when 

p = 9 dB. ■ 
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Perhaps the most interesting feature in Figure 3.3-13 is the 

behavior of the P^ as a function the SNR for V^ = 100 and P = 10"^ 

For p less than about 12 dB, the P^ increases with p; it increases 

again for p > 17 dB, but for 12 dB < p < 17 dB, the P^ decreases with p. 

From the mathematical expression for the P^, equation (3.3-14), we observe 

that such a decrease is possible since the second term is negative. Because 

we are assuming PQ = P, that is, the a priori SNR equals the actual SNR, 

the thresholds (m, n2> ns) change as p changes in order to maintain a 

constant false alarm probability. Evidently, these thresholds change 

within such a way as pincreases as to produce the "dip" in P^ we observe 

in Figure 3.3-13. 

For fixed thresholds (m, na, 03), which corresponds to having 

both po and \ fixed, we expect that P^ will "dip" because the action of the 

likelihood ratio characteristic is to "pass" or accentuate certain values 

of the detected envelope, and to "suppress" other, high values. That is, 

the detector discriminates against a range of high values of x, in effect 

considering them to be due to noise impulses. 

When the mixture parameter is Increased to e = 0.1 or to 0.5, 

representing a greater departure from Gaussian noise, the optimum detector 

performs as shown in Figure 3.3-14 and 3.3-15, in contrast to that of the 

Gaussian detector, shown previously in Figure 2.2-7 and 2.2-9. We observe 

that for V^= 10, the detection probability is practically the same for 

both detectors, except for smaller values of SNR, at which the optimum 

detector's characteristic is not a monotonic function of the detected 

envelope for the false alarm thresholds considered (see Figure 3.3-4). 

However, the optimum detector performance is much improved for 

V2= 100 and Pp, < 10 " \ It is notable that for much of the range of SNR 

values shown, the performance of the detector is better for V^= 100 than 

for V2= 10. 108 
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3.3.3.2 Results for fixed a^ priori SNR. 

Since it is usually the case that the SNR of the signal to be 

detected is not known, the detector performances shown in Figures 3.3-13 

to 3.3-15 must be considered as upper bounds to what may be realized in 

practice. Now we consider the effect on detection performance as a function 

of actual SNR when the detector GLR characteristic A (x; PQ) is a fixed 

design, due to assuming that the SNR takes a certain fixed value, pg. 

For given Pp. and PQ, this results in a comparison of the squared envelope 

X to a threshold n> or possibly to three thresholds (m, ri25 ns), using 

the test (3.3-9) discussed previously. 

A typical plot of detection probability vs SNR for fixed OQ 

is shown in Figure 3.3-1&, for the case of e = 0.1 and V^ = 100. For 

both Pp^ = 10"^ and lO"^, the Pp curves for pg = -10 dB and pg = +10 dB 

are given, and are compared to the comparable optimum (pg = p) and Gaussian 

detector results. As expected, the fixed-pg P^. achieves the best performance 

at the points for which pg = p, the actual SNR. When the actual SNR is not 

equal to pg, we may distinguish two different consequences, depending 

on Pg.  . "  . 

For PQ = -10 dB, the detector is predicated on the assumption of a 

weak signal. From Figure 3.3-16 we observe that the resulting P^  values 

are almost as high as the optimum values, for actual SNR as much as 5 dB, 

or 15 dB different than the assumed value! However, the P^. then falls to 

very low values, less than the false alarm probability, before rising again 

for extremely high SNR. 
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For pQ = +10 dB, the performance falls to low values more quickly 

when p > po> that is, it is more sensitive to PQ when p > PQ- But the 

degradation in Pp. for p < PQ is relatively minor: the degraded performance 

is still better than that achieved by the Gaussian detector. 

These results suggest that, when a fixed value of a priori SNR 

is used, it should be somewhat higher than the average value of SNR 

anticipated. 

3.4 PERFORMANCE FOR MULTIPLE SAMPLES. 

We have observed for a single sample that the generalized likelihood 

ratio (GLR) detector for signals in bandpass Gaussian-Gaussian mixture 

noise achieves an improvement in detection performance for low SNR over that 

of the conventional (quadrature or square-law envelope) detector. 

Now we consider the detector performances achieved when the 

number of samples (K) is greater than one. Several issues become significant 

for K > 1 which do not exist for K = 1. First, it becomes necessary to 

distinguish between signal models that we have called Type 1 (slowly varying 

phase) and Type 2 (independent phase samples). In both cases the detection 

is incoherent in the sense that the instantaneous signal phase is unknown 

(assumed to be uniformly distributed on (0, ZTT); the difference between the 

two models is in the assumed rate of phase fluctuation (bandwidth) over 

the observation.time during which the K samples are taken. 

The second issue which becomes significant for K > 1 is the 

assumption concerning the joint distribution of the K noise samples. Because 

of the Gaussian-Gaussian mixture probability density function (pdf) assumed, 
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P    (a,S) 
(2ua2) -K 

V2V2...vl 
12    K 

exp I 
k=l 

~2^^ 

(3.4=1) 

the quadrature samples |i^ u' i^ k 1 ="^6 uncorrelated or linearly independent 

regardless of the assumed pdf for the variance mixture, of the general form 

M 

Pv2y = Y. ^n ^-i, 
m=l 

M 

I 
m=l 

C =1 
m 

(3.4-2; 

As discussed in Section 2.1.2, the number of terms in the pdf p 2(2.)' 3nd 

their weights |C |, depend on the assumptions about the independence or 

dependence of the non-Gaussian quadrature sample pairs. 

3.4.1 Forms of the GLR for Multiple Samples 

For K > 1 samples of the quadrature components of the received 

waveform, the generalized likelihood ratio (GLR) for the various assumptions 

about the signal phase and the variance multiplier take the various forms 

discussed previously in Section 3.1. We observe that, in general, the 

independent signal phases (Type 2) plus independent noise variance case 

has the most convenient form, sinch the detection probability admits the 

development 

Pr {A,(r)>nj 

Pi^ TT Ai(iv)>n ^' 

Pr } £n Ai(r, ) > in . (CASE II) (3.4-3) 
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Thus an equivalent detector for this case when there are multiple samples 

is a simple extension of the detector ^i{r^)  for a single sample. 

The second most convenient form is that for independent phase 

and equal vf, since it can be constructed using the statistics 

z,(r)= Y.H''l)'-   I'k' (3.4-4) 

o 9 

the sum of samples of the squared envelope, and, for v = 1 or V , 

Zad.v )= 2_.'^" '^ (^'^^) 

■Kp/v2 + "^iu  lo l-^z^l (3.4-5a; 

k     ^   '^ 

-Kp/v2 + pzi(r)/2v^ai, P small      (3.4-5b) 

-Kp/v2 + ^y R,^; P large.      (3.A-5C) 

The GLR for this case is formed from Zj^ and Z2 as 

A(r) = {1-W[zi(r)]}e"^2(ll. D + W[Zr(r)] e''^^"^' ^"^ (3.4-6a; 
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■2K ..._ r  _  /n  9  \/2- eV   exp{-Zi/2af V^} 
where  W(z^)=   "     (3.4-6b) 

(1-e)  exp{-Zi/2a2} + eV"^'^ exp{-Zi/2af V^} 

Similarly, the detector for constant signal phase (Type 1 

signal) and slowly-varying noise variance (equal W?}) can be reasonably 

implemented using the statistic Zi(r.) and the statistic 

Z3 ^'-^'-(^^^^ -'(^'^Y' . ^'-'-'^ 
since 

E^JTT   Ai(l,|e.v) 

- e'"""  dJj3r ^,irj ] ■ (3-4-«: ^n/^ 

The GLR for this case is formed from z-^  and Z3 as 

A(r) ={l-W[Zi(r)]} e"^*" Io( /2pz^{r_)/ai) 

(3.4-9; 

+ W[zi(r)] e"^''/^^ lo (v'2pZ3(r)/a^VM, 

where W [Zi(jr)] is given by (3.4-6b). 

The most complicated detector is that for equal phase and 

K 
independent v^, which requires generating Zi(£) and M=2 statistics of the 

form 
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■■■'=■ ■ (14)' • (14)"' .= 1. 2,...,H.  '^■^-'°' 

as noted previously in Section 3.1. 

3.4.2     Numerical Results for Independent Samples 

For independent samples of the envelope of the signal plus 

bandpass Gaussian-Gaussian mixture noise, the performance of the optimum 

detector (3.4-3) for Type 2 signal can be computed using the numerical 

convolution technique shown in Appendix 3B. Since the anticipated effect 

of using multiple samples is to increase the detection probability, it is 

sufficient to consider but a few cases to verify this effect. 

Figure 3.4-1 gives the detection probability for the optimum 

detector for Pp.=10-^, e=0.1, 7^=10, and the number of independent samples, 

K, equal to 1, 2, 5, 10, and 20. The accumulated signal energy allows 

90 percent detection with about 7.3 dB less SNR for K=10 than for a single 

sample. 

Figure 3.4-2 is similar to Figure 3.4-1, except that the 

variance multiplier is increased to V^=100. For this case, about 7.5 dB in 

detectability is gained by observing K=10 samples. 
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4.0 SUBOPTIMUM DETECTORS 

4.1 APPROXIMATIONS TO THE OPTIMUM DETECTOR 

Exact implementation of the generalized likelihood ratio (GLR) 

for bandpass Gaussian mixture noise, given by equation 3.3-1, requires 

generating the function 

-b 
f(a, b) = e " Io(v^^), (4.1-1) 

where the argument "a" is proportional to the squared envelope of the received 

waveform and "b" is proportional to the a priori SNR, pg. (See Figure 3.2-1). 

We now consider simplifications which result from approximating f(a, b) and 

the impact on detector performance 

4.1.1    Large SNR Approximations 

For large values of SNR (b>>l), we have 

-b+/2ab 

f(a, b) » , b>>l. 

2TT /2ab 

with the resulting GLR approximation (x =  R^/of) 

(1-e) exp 
A^(x;p) 

const 
(y/^-       y/g^   )2 

(4.1-2) 

V^^^Pl 2V^ 

(1-0  exp{-x/2J    +    ^   exp   |-x/2V2| 
(4.1-3) 

This approximation is expected to be valid [23] for /2ab > 3.75, or 

p > 7^* /x. 
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Examination of the numerator of (4.1-3) suggests that for large 

SNR the GLR will exhibit a peak near the normalized squared envelope value 

X = 2po. This phenomenon is confirmed for PQ = 20 dB and V^ = 100 or 1000 

by the previous Figures 3.3-2, 3.3-3, and 3.3-6. Thus we observe that in 

general the GLR characteristic acts as a "window", permitting high output values 

only in the vicinity of input values near the anticipated SNR (if the signal 

is present), and suppressing the output for higher input values which are more 

likely to be due to noise. 

Implementation of the high SNR approximation to the GLR is only 

slightly less complicated than that of the GLR itself. More important, this 

approximation is still parametric in SNR, offering no advantage in terms of 

a priori information requirements. 

4.1.2    Small SNR Approximation and Locally Optimum Detector. 

For small values of SNR (b<<l), we have 

f(a, b) « 1 + b (^f - l)' b«l, (4.1-4) 

with the resulting GLR approximation {x=R^/al) 

n-e)    e"^/^ V'*(x-2) + T^ e"^/^^^ (X-2V2) 
,  ,  , ^  p       I  . (4.1-5) 

A„(x;p) « 1 + -^ . — ;  

2V^ (l-e) e-/2 . ^ e-/2V^ 

This approximation is expected to be valid for /2ab < 3.75 or p < 7/x. 

For detection purposes, we may ignore the additive constant in (4.1-5) and 

also the constant factor p/2, and use the weak signal "locally optimum 

detector" (LOD), .    ' 
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where 

Z(x) = [l-W(x)] (x-2) + W(x) (x-2V2)/V^ (4.1-6a) 

W(x) = ^ e-W[ (1-e) e-/2 . f e-/2^']  .    (4.1-6b) 

The form of (4,1-6) is rather easily interpreted as a combination 

of LOD's for the Gaussian case, Zg(x) = Y.-2a^/o\  .    This interpretation can 

also be understood from the plots of (4.1-6) given in Figures 4.1-1 to 4.1-3 

for various combinations of e and V^. 

We note that the LOD is not parametric in the SNR, although it 

still requires a priori information in the form of e and V^, of course. 

It is often argued that the weak signal case is the most interesting one. 

However, historically the LOD has been studied primarily because it usually 

involves a simpler detector structure than the GLR and therefore is more 

amenable to analysis. 

For Gaussian and other monotonic GLR's, the LOD performs well at 

high SNR. As will be demonstrated below, this is not the case for the 

Gaussian-Gaussian mixture LOD. 

4.1.3    Performance of the Locally Optimum Detector 

Computations of the false alarm and detection probabilities for 

the bandpass Gaussian-Gaussian mixture noise locally optimum detector proceed 

in a way similar that described for the GLR in Section 3.3, with the important 

exception that the false alarm thresholds no longer depend on an a priori 

or assumed value of SNR. 
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4.1.3.1 False Alarm Probability 

Single-sample false alarm probabilities for the LOD given by 

(4.1-5) are plotted in Figures 4.1-4 to 4.1-6 as a function of the first 

threshold on the normalized squared envelope, ni/of . It may be observed 

from these figures that the false alarm probability is very sensitive to 

variation in the threshold for Pp^ < z,  because at approximately this point 

the threshold X on the LOD starts being above the local maximum. For 

example, in the plot of the LOD characteristic for e = 0.01 (Figure 4.1-1), 

the peaks for V^ = 10, 100, and 1000 occur at normalized squared envelope 

values of 12.5, 15.2, and 19, respectively. In Figure 4.1-4 we see that the 

Pp. curves for these cases have very steep slopes in the vicinity of these 

values. 

A similar effect is seen for V^ = 100 and 1000 in Figure 4.1-6, 

in which the Pp» is seen to decrease suddenly near the threshold value of 2; 

this behavior corresponds to the x threshold on the LOD in Figure 4.1-3 

starting to rise above the local minimum of the LOD. 

False alarm thresholds for the LOD are given in Table 4.1-1 

for various values of e, V^, and Pp.. 

4.1.3.2 Detection probability for a single sample. 

Using the false alarm thresholds in Table 4.1-1, the detection 

probability for the locally optimum weak signal detector in bandpass 

Gaussian-Gaussian mixture noise was computed according to 

PQ(P) = Pi(p; ni) - Pi(p; n2) + Pi(p'» ns), (4.1-7) 
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Table 4.1-1. False alarm thresholds for locally optimum detector in 
bandpass Gaussian-Gaussian mixture noise. 

EPSILON 

0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 

1.0 
1.0 
1.0 
1.0 

10.0 
10,0 
10.0 
10.0 

100.0 
100.0 
100.0 
100.0 
1000.0 
1000.0 
1000.0 
1000.0 

TARGET PFA 

l.OOOD-01 
l.OOOD-02 
l.OOOD-03 
l.OOOD-04 
l.OOOD-01 
l.OOOD-02 
1.0000-03 
l.OOOD-04 
l.OOOD-01 
l.OOOD-02 
l.OOOD-03 
l.OOOD-04 
l.OOOD-01 
l.OOOD-02 
l.OOOD-03 
1.0000-04 

ETAl ETA2 ETA3 

4.60517D+00    - 
9.21034D+00  —  
1.38155D+01  ——  
1.84207D+01   - 
4.66694D+00 1,909520+01 
9.40157D+00 1.50455D+01 
1,201910+01 1.28040D+01 
1.23762D+01 1.24552D+01 
4.60190D+00 2.24671D+01 
9.27215D+00 1.92562D+01 
1.35694D+01 1.65175D+01 
1.49714D+01 1.53022D+01 
4.58750D+00 2.73836D+01 
9.20485D+00 2.45440D+01 
1.38548D+01 2.24278D+01 
1.78277D+01 2.00369D+01 

2,843860+02 
7,113960+02 
8.36035D+02 
8,387230+02 
2.51932D+04 
7.220340+04 
06968D+05 
11320D+05 
58924D+06 
19963D+06 
17367D+07 

1.47332D+07 

0.10 
0.10 
0.10 
0,10 
0,10 
0.10 
0,10 
0,10 
0.10 
0.10 
0,10 
0.10 
0.10 
0.10 
0.10 
0.10 

0.50 
0,50 
0.50 
0.50 
0,50 
0.50 
0.50 
0,50 
0.50 
0,50 
0.50 
0.50 
0,50 
0.50 
0.50 
0.50 

1.0 
1.0 
1.0 
1.0 

10.0 
10.0 
10.0 
10.0 
100,0 
100.0 
100,0 
100,0 

1000.0 
1000.0 
1000,0 
1000.0 

1.0 
1.0 
1.0 
1.0 

10.0 
10,0 
10,0 
10,0 

100,0 
100.0 
100.0 
100,0 

1000,0 
1000.0 
1000.0 
1000.0 

l.OOOD-01 
1,0000-02 
l.OOOD-03 
1,0000-04 
l.OOOD-01 
l.OOOD-02 
l.OOOD-03 
1,0000-04 
1,0000-01 
1,0000-02 
1.0000-03 
l.OOOD-04 
1,0000-01 
l.OOOD-02 
l.OOOD-03 
l.OOOD-04 

l.OOOD-01 
1,0000-02 
1,0000-03 
1,0000-04 
1,0000-01 
1,0000-02 
l.OOOD-03 
1,0000-04 
l.OOOD-01 
l.OOOD-02 
1,0000-03 
1,0000-04 
1.0000-01 
l.OOOD-02 
1.0000-03 
1,0000-04 

1, 
1, 
4. 

4.60517D+00 
9,210340+00 
,381550+01 
.842070+01 
.901890+00 

7,989250+00 
8,449890+00 
8,496350+00 
4,512640+00 
9,111030+00 
1,094750+01 
1,115740+01 
4,412160+00 
9.085210+00 
1.334780+01 
1.468770+01 

1,233220+01 
9.01454D+00 
8.553140+00 
8.50667D+00 
1.699020+01 
1.304710+01 
1,141080+01 
1.120390+01 
2,223250+01 
1.891950+01 
1.61705D+01 
1.500130+01 

4.60517D+00     
9.210340+00  -——  
1.381550+01 - ———— 
1.842070+01   — - 
4.39572D+00 7,425940+00 
5.62999D+00 5.933800+00 
5.76669D+00 5.794580+00 
5.780440+00 5.780620+00 
3.693220+00 1,283080+01 
7.255220+00 8.64562D+00 
7,879220+00 8,020080+00 
7.942600+00 7,956680+00 
3,296720+00 1.880560+01 
8.042590+00 1.401850+01 
1,081550+01 1,167850+01 
1,120880+01 • 1.129590+01 

2.822180+02 
4.42917D+02 
4.467570+02 
4.467960+02 
2.506650+04 
6.476830+04 
7,170030+04 
7.180290+04 
2.411730+06 
7,014330+06 
1.043800+07 
1,084040+07 

1.52506D+02 
1,726260+02 
1.728420+02 
1.728440+02 
1.612880+04 
3.870990+04 
3.948520+04 
3,949330+04 
1,292020+06 
5.726490+06 
7,216060+06 
7,252020+06 
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where Pi( ) is given by (3.3-15). The results are shown in Figures 4.1-7 

to 4.1-10. 

The cases of e = 0.01 and V^ = 1, 10, 100, and 1000 are shown 

in Figure 4.1-7 for false alarm probabilities of 10" , 10'^, and 10'^. 

The V^ = 1 cases represent the performance of the Gaussian detector in 

Gaussian noise. We observe that the LCD's performance closely follows 

that of the V^ = 1 case for low SNR (when the signal actually is weak, as 

assumed) and for higher Pp^^. As the required Pp. is decreased, the LCD 

detection probability departs more from the V^ = 1 case. The most sig- 

nificant fact made apparent by the figure is the severe degradation in 

performance when the SNR is greater than 6 dB or 7 dB; Pp. actually falls 

below Pp^ before rising again to unity for very  high SNR. 

A comparison of Figure 4.1-7 with Figure 3.3-13 reveals that 

the LCD detection performance is quite close to the optimum for SNR values 

less than zero dB. 

It is interesting to note that the LOD Pp. is generally higher 

for higher values of the variance ratio, V^, when V^ is greater than 10. 

This behavior is due to the wider "window" or acceptance region for 

higher V^ which was apparent from the plots of the LOD characteristic. 

Increasing e to 0.1 yields the curves shown in Figure 4.1-8, 

and for e = 0.5 the Pp curves of Figure 4.1-9 are produced. The Pr, per- 

formance is seen to deteriorate with increasing values of the mixture 

parameter, e, except at high SNR's. The fact that eventually, for very 

high SNR, the P^ approaches unity is demonstrated by Figure 4.1-10. 
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4.1.4   Performance of the Weak Signal Locally Optimum Detector for 
Multiple Samples 

The LOD statistic Z(x) given by (4.1-5) pertains to a single, 

normalized squared envelope sample, x= R^/a^. For independent multiple 

samples it is easy to show that the locally optimum detector is 

K 

Z^(x) = ^ Z(x^). (4.1-8) 

k=l 

Since Z(x) is nonlinear, the distribution of 1^^}^)  is very difficult to 

obtain analytically, if possible. Instead, the numerical technique given 

in Appendix 3B was used to evaluate the detection performance of \M   • 

Figures 4.1-11 and 4.1-12 show the performance of the statistic 

Z. for bandpass Gaussian-Gaussian mixture noise (e=0.1 and V^= 100) for 

P =10'^and 10'^, respectively. The numerical technique used 32 levels to 

represent the pdf for a single sample. We observe from these figures that 

the detection performance is much improved at low signal levels when the 

number of independent samples is increased. The same "dip" in performance 

for moderate SNR's is observed as for one sample, however. Thus, unless 

one takes the view that we are interested only in signals with SNR < 6 dB, 

say, then we cannot be satisfied with using the locally optimum detector. 

In the next sections we consider other, suboptimum detectors 

which do not perform as well as the LOD for small SNR's, but on the 

other hand perform better uniformly as the SNR increases. 
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4.2 SERIAL NORMALIZATION DETECTORS 

Under various assumptions concerning the time dependency among 

samples of the bandpass Gaussian-Gaussian mixture process, we can develop 

suboptimal detector approaches and evaluate them. In this section, we 

consider detectors based on an assumption of slowly-varying noise variance, 

In Section 4.3 this assumption is relaxed but it is assumed that several 

channels of data have noise variances which change in the same way with 

time. 

4.2.1   Conceptual formulation 

If K samples of a Gaussian process with unknown, fixed variance 

are to be used to test the hypothesis HQ:m=0 against the composite alter- 

native Ho:mj^O, where m is an unknown but fixed mean value, then an 

appropriate test statistic [27] is the ratio (Student's t-statistic) 

t(X]^, X2, • . ., X. ; 
y^ X 

^ (x^-x)2/(K-l) 

k=l 

(4.2-1) 

where x  is the sample mean of the K samples (x^, X2, ..., X|,). 

For the bandpass case, this test statistic generalizes to the 

quantity [25] 

V^' h^ 
72 , 72 
^c + ^s 

K-lZ- (x^ -x^)2 + (x^ -xj 
^k ^ h    ' 

(4.2-2) 
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where the {x ,, x . } are the in-phase and quadrature samples of the 

data. 

For example, for K=2 samples (the minimum number), the test 

statistic can be expressed as 

(x^ +x, V + (x. +x )2 

T2(x . X . X   x ) = ——- . (4.2-3) 
Ci   C,   Si   S2    , )2 ^ (   ^    )2 

C^  C2       S;L   ^2 

This statistic may be interpreted as an estimate of the SNR. 

Detection of a signal is said to have occurred when this estimate exceeds 

a threshold. 

4.2.2.  Analysis of the detector performance 

It can be shown that under the assumption that the K successive 

pairs of quadrature samples are indeed jointly Gaussian, conditioned on 

a random, unknown variance which is either a^ or a| for all K samples, 

then Tj., is distributed as a noncentral F-statistic: 

T^ ->/ F(2, 2K-2, X=2Kp). (4.2-4) 

Because of the randomness of p, we can express the distribution 

of 1^,  in this "slowly varying" bandpass Gaussian-Gaussian mixture noise 
Is 

unconditionally by 

\ 
F(2, 2K-2; 2Kp) with probability (1-e) 

< (4.2-5) 

F(2, 2K-2; 2Kp/V2) with probability e; 
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since the ratio form of the statistic in effect cancels out the variance, 

the random distributional parameter becomes the SNR. 

4.2.2.1 False Alarm Probability 

Under the hypothesis Ho:p=0, the distribution of Tj. is simply 

T^ - F(2. 2K-2; 0), (4.2-6) 

or central-F.    Thus the false alarm probability does not depend on either 

e or V^, the parameters of the mixture: 

Pp^=    Pr {T^ > n|p=0} 

= I^[K-1, 1] (4.2-7a) 

(4.2-7b) 

with 

<i ~ > ■ > 

K-l+n    . 

where I  [a, b]  is the (normalized)incomplete Beta function: 

I^(a. b) =   I      dt   t^"^ (l-t)"^"^ X   r(a+ b)/r(a)r(b) 

°      b-1 (4.2-7C) 

=    5^    ^      %f^ ^^^r'  ^ ^" integer. (4.2-7b) 
r=0 

Therefore the false alarm probability has the simple form 

T K-1 PpA = .K-l    JJ<-1. 
^'^        ^ K-l+r (4.2-8) 
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this is easily inverted to yield the threshold expression    . 

no = (K-1) Uf-U    =  (K-1) [P, ■^''^'^■^^ -1].        (4.2-9) FA 

For example, for K=2 samples. 

no =5o^ -1 = Pp;^"-^ "1 . (4-2.10) 

Because no and Ko  are equivalent thresholds, we can express 

our results in terms of either one. 

4.2.2.2 Detection Probability 

From (4.2-5) it follows that the detection probability is 

Pjj = Pr {T^ > n 1 pm 

= (1-e) Pr {F(2, 2K-2; 2Kp) > n} 

+ e  Pr{F(2, 2K-2; 2Kp/V2) > x)} 

= (1-e) Pi(m2Kp) + ePi(n; 2Kp/V^) (4.2-11) 

where we define 

PI(TI; X) =  Pr{F(2, 2K-2; x)  > n). (4.2-12) 
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Various expressions can be developed for Pi . Among the most convenient 

ones are 

Pi(n; X)   = e 
■x/Z Z 

r=0 

K-1 

im)l 
r!   *5 

I, (K-1, r+1). (4.2-13a) 

= (K-1) 

r=0 

,  ,  dt t*^"^ (l-t)"" e'^^^^' 

(4.2-13b) 

with K  as given previously by (4.2-7b). The expression given by (4.2-13a) 

is based on the noncentral-F statistic probability integral in [23]; 

(4.2-13b) follows from the development shown in Appendix 4A. 

4.2.3.  Numerical results 

Figures 4.2-1 through 4.2-9 give the detection performance of a 

serial normalization detector for bandpass Gaussian-Gaussian mixture 

noise and variance ratios of 1, 10, and 100. The figures use the 

following parameters: 

K, number 

of samples 

e, mixture parameter 

0.01 

Fig 4.2-1 

Fig °4.2-4 

Fig 4.2-7 

0.1 

Fig 4.2-2 

Fig 4.2-5 

Fig 4.2-8 

0.5 

Fig 4.2-3 

Fig 4.2-6 

Fig 4.2-9 
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Although the number of samples is small, we are reluctant to 

use larger numbers because the assumption is made that the noise is 

stationary Gaussian for at least K samples. 

From these figures, we observe that the parameter V^ does not 

affect the detection performance significantly for small values of e. 

Increasing the number of samples does improve the performance, but the 

performance is subject to a (temporary) levelling-off, for high values 

of V^, which becomes more evident as K increases. For example, in 

Figures 4.2-7 to 4.2-9, we observe that the detection probability rises 

to a value slightly greater than [l-e)  before levelling off. This 

behavior is attributable directly to the two terms in the P- expression 

(4.2-11), which rise at the same rate with SNR, but at a 10 log^Q (V^) dB 

separation, and with different rates. 
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4,3    PARALLEL NORMALIZATION DETECTORS 

The Gaussian-Gaussian mixture noise we have been treating as 

a particular case of non-Gaussian noise can be considered as arising from 

random time variation in the power or variance of a Gaussian noise process. 

In this view, the noise variance af is that of a stationary, background 

Gaussian noise process, and a| > a^ is the combined variance of the 

background process plus a "switched burst" [26] of higher variance noise. 

The mixture parameter e then corresponds to the probability of having 

received the total noise of variance a|, modelled in our work as bandpass 

Gaussian. 

For weak signals in lowpass, "switched burst" or Gaussian-Gaussian 

mixture noise, it was shown in [26] that a detector of the form illustrated 

in Figure 4.3-1 can perform detections more reliably than a fixed detector 

structure in high kurtosis Arctic under-ice noise data. In effect, given 

K samples, the data are classified into two groups on the basis of their 

magnitudes; the larger data samples are processed assuming the noise is 

background plus the higher variance noise, while the remainder of the samples 

are processed as if only background noise is present, in addition to 

a possible signal. The detector nonlinearities are the appropriate 

locally optimum detectors. 

The extension of the detector concept of Figure 4.3-1 to the 

bandpass Gaussian-Gaussian mixture case would take the form shown in 

Figure 4.3-2. Since the locally optimum or weak signal detector for 

noncoherent signals in bandpass Gaussian noise is the square-law envelope 

detector, the switching operation selects whether normalization is per- 

formed by al  or by a| = c^fV^. In part (b) of the figure, we show that 
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Tf the switching decision is not smoothed over in samples but is 

instantaneous, then the resultant detector characteristic is a nonlinearity 

which is a simplified form of the locally optimum detector discussed 

previously. 

4.3.1   Parallel Normalization Concept 

In Section 4,2 we based a detector on the assumption that 

successive time samples of the Gaussian-Gaussian mixture process were 

jointly Gaussian with the same variance for short periods of time. Now 

we consider a detector based on the following assumptions: 

(a) one or more "parallel" channels are available, not con- 

taining a signal, for a total of M channels 

(b) these channels contain bandpass Gaussian-Gaussian mixture 

noise, with the joint pdf at the same time 

M 

—c —s 
(a, 3) =—lljiLL.expi-^ 

2^M (2TT af) 
1 m=l 

(27r al) 2>M 
expi 

^ m=i 

> • 

Without loss of generality, we assume that the channel of interest is 

Channel 1 (m=l); (4.3-1) implies that, given whether all M channels 

have variance af or a|, they are conditionally independent bandpass 

Gaussian processes. 

(4.3-1) 
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Using these assumptions, a noncoherent detector can be formulated 

as follows: at time t , the square-law envelope detector sample in the 

channel to be tested for a signal. 

R!k = «?k" ^h (4.3-2) 

can be normalized by the sum of the samples in the M channels to form the 

statistic, 

R?k 

M 

T 
m=l 
L^   mk 

(4.3-3) 

where the sum acts as a quantity proportional to an estimate of the 

noise variance common to the channels. 

Detection then consists of comparing the accumulation of 

K such statistics to perform the test 

Z 
k=l 

Hi 
\      threshold. (4.3-4) 

4.3.2   Distribution of Test Statistic 

It is relatively easy to show that for K=l and M=2, then the 

pdf of the test statistic given by (4.3-4) is 

/ 

P,(a) = (1-e) e-P^^-°'^ (1 + pa) 

/    +,e-P^l-<^)/V'(l +pa/V2), 0 ja< 1; 

0, elsewhere. 
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■                           Note that when p=0 (HQ is true), then z is uniformly distributed 

between 0 and 1. 

I                                            Convolution may be used to obtain results for K>1.    For M>2, 

it may be shown that 

P^ia)   =  (1-e)   Pf^(a;  p)   +    £  Pj^(a;   p/V^) (4.3-6a) 

■                          where                                          / 

P^{a;  p)  = (M-1) e-p(l-°)  {l~af-'^£^_^  (-pa). 

■ 

1 
0 <    a $ 1; 

0, otherwise. 

(4.3-6b) 

V 

In (4.3-6b), ^j,_,(')  is the Laguerre polynomial of order M-1. 

■                           4.3.2.1    False Alarm Probability 

1                                            For p=0,  (4.3T7) reduces to 

1                                                                         P^Ca    HQ)   =   (M-1)   (1-a)^"^   ,   0  ^ a   <    1. (4.3-7) 

I                           Thus for one sample, the false alarm probability is 

g                                                            Pp^ =    Pr {z >    n      p=0} 

1 '   1            ,    n < 0 

1 
(1-n)""^    0 < n < 1 (4.3-8) 

1                                                                        [O             .    n,l      . 

1 

1 
1 
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For two samples (K=2) and two channels (M=2)s the false alarm 

probability is 

r   1. T1 < 0 

1 - 1 2 
2 ^ » 0 ^ n < 1 

¥- •n)^ 1 < n < 2 

^   0, n < 2. 

(4.3-9) 

We observe that the false alarm probability does not depend on the 

Gaussian-Gaussian parameters   e   or V^; thus the false alarm threshold can 

be chosen without knowing or estimating them. 

4.3.2.2    Detection Probability 

Integration of (4.3-5) gives the K=M=2 case of the detection 

probability: 

Pp = Pr {z > n   1  P j' 0} 

= (1-s)       [l-r^e-'^^-^h (4.3-10) 

+ e [1-n e-P^^-^)/^'],    0 <    n   <1, 

Since Pp» - 1-T\,  (4.3-10) can be written 

(4.3-11) 
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Generally, for K>2 and/or M>2 it is very tedious although 

straightforward to find the detection probability. Numerical procedures 

such as convolution and integration are recommended. For example, the 

Pj. for K=M=2 can be expressed by 

where 

= /   da f(a ; p) (4.3-12) 

f(o; p) = (l-e)2 g(a; p, p) 

+ 2e(l-e) g(a; p, p/V^) 

+ e^ g(a; p/V2. p/V2) (4.3-13) 

and for 1 <: a < 2, 

g(a; pi, P2) = e"^P''P"[(l+p)2(2-a) -p(l+p)(2-a)2 

+ p2(2-a)3/6], pi= P2 = p ;    (4.3-14) 

(Pl-P2)^ 

)2(a-2) 
[-2piP2 + P?(pi- Pz) 

+P2(pi- P2)(pf-Pl P2 ■ P2)(c(-1)] 

+ ePi^"-^^ [2piP2 + p^(pi- P2) 

+ Pi(pi- P2)(pi- P1P2" Pi)(a-1)] 

(4.3-15) 
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4.3.3        Numerical  Results 

The performance of a two-channel   (M=2)  parallel  normalization 

detection in bandpass Gaussian-Gaussian noise is shown in Figures 4.3-3 

to 4.3-8 for variance ratios of V^=l, 10, and 100.    The other parameters 

used are the following: 

e = mixture parameter 

0.01 0.1 0.5 

K= # of time 

samples 

1 

2 

Fig 4.3-3    Fig 4.3-4     Fig 4.3-5 

Fig 4.3-6   Fig 4.3-7     Fig 4.3-8 

The behavior of this detector with the various parameters is 

very similar to that of the serial normalization detector treated in 

Section 4.2: 

(a) V^ has little influence for small e. 

(b) Ppj uniformly increasing with SNR. 

(c) P[, improving for K increasing. 

Considering that the assumptions in the analysis of this detector 

are probably less restrictive than those of the serial normalization 

detector (depending upon what constitutes a "parallel" channel), we observe 

that reasonable comparable performances are achieved and that therefore 

parallel normalization techniques may be preferred because of their simpler 

implementation. 
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Figure 4.3-5 Performance of two-channel parallel normalization 
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4.4      COMPARISON OF DETECTOR PERFORMANCES 

Figures 4.4-1 and 4.4-2 provide graphical comparisons of the 

performances of the weak signal LOD, the serial normalization detector, 

and the parallel normalization detector. It is seen that the LOD is the 

best choice when it can be assumed that the signal is weak (SNR < 5dB), 

but it does not perform well if the signal is strong. 

For strong signals both the serial normalization detector 

and the parallel normalization detector are superior to the LOD, with the 

parallel one tending to be more effective than the serial one. In 

addition, as discussed previously, these detectors are attractive in that 

they can be designed to maintain a given false alarm probability without 

a priori information on the noise distribution parameters. 
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APPENDIX 3-A 

FORTRAN program to calculate false alarm and detection 

probabilities for optimum detector in bandpass Gaussian- 

Gaussian mixture noise. 
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PDP-11 FORTRAN-77 V4.0-1      10:35:01    7-May-85 
DETECT.FTN;3 /F77/TR:BL0CKS/WR 

Page 1 

0001 

0002 
0003 

0004 

C 
C 
C 
C 

C 
C 

PROGRAM DETPRB 

DETECTION PROBABILITY CURVES 

ANALYSIS: L.E. 
PROGRAM:  R.H. 

MILLER 19 APR 85 
FRENCH 19 APR fi5 

LATEST VERSION 7 MAY 85 

THE PROGRAM COMPUTES THE DETECTION PROBABILITY FOR 
THE OPTIMUM RECEIVER FOR THE GAUSSIAN-GAUSSIAN MIXTURE 
NOISE CHANNEL. 

THE COMPUTATIONS MUST BE DONE IN DOUBLE PRECISION TO 
AVOID UNDESIRABLE EFFECTS OF ROUNDOFF DUE TO THE SENSITIVITY 
OF DETECTION PROBABILITY TO SMALL ERRORS IN SETTING THE 
THRESHOLDS. HOWEVER, THE PLOT ROUTINES REQUIRE SINGLE 
PRECISION INPUTS; THUS EVERYTHING IS DONE IN DOUBLE PRECISION 
UP TO THE FINAL ANSWER ARRAY, WHICH THEN TRUNCATES THE 
RESULT TO SINGLE PRECISION FOR THE PLOT PACKAGE. 

THE PROGRAM IS RATHER COMPLICATED, AS IT IS IMPERATIVE THAT 
THE PROGRAM AVOID STARTING THE SEARCH FOR ROOTS OF THE 
EQUATION   LAMBDA(X) = CONST  IN THE REGION BETWEEN THE 
LOCAL MAXIMUM AND LOCAL MINIMUM (IF THEY EXIST) OF THE 
LIKELIHOOD RATIO. ALSO, THE PROGRAM MUST HANDLE THE CASE 
OF THE LIKELIHOOD RATIO BECOMING MONOTONIC FOR V**2=l (THE 
GAUSSIAN CASE) OR V**2 .NE. 1 AND HIGH SNR. MUCH CARE MUST 
BE TAKEN THAT THE ROOT SEARCH NEVER GOES BEYOND A VALID POINT 
DUE TO EVEN 1 LSB ROUNDOFF. 

EVEN WITH ALL THIS CARE, A FEW IRREGULARITIES IN THE SMOOTH 
CURVES WILL APPEAR FOR SOME COMBINATIONS OF PARAMETERS. THESE 
CAN BE MANUALLY SMOOTHED OUT ON THE PLOTTED OUTPUT, USING PEN 
AND INK. 

BECAUSE OF TIME CONSIDERATIONS, AS EACH CURVE IS COMPLETED THE 
DATA IS WRITTEN TO AN ARCHIVE FILE FOR POSSIBLE REUSE IF THE 
PROGRAM IS RESTARTED AT A LATER DATE. 

IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
REAL EORIG,EUPI,PORIG,RTEMP 

PLOT PARAMETERS xORIG = VALUE AT ORIGIN, xUPI = UNITS/INCH 
WHERE X = E FOR SNR AXIS AND x = P FOR PROBABILITY AXIS 

PARAMETER (EORIG=0.,EUPI=0.8,P0RIG=-4.,PUPI=0.5) 
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DETECT.FTN;3 /F77/TR:BL0CKS/WR 

C 
C PAGE EJECT CONTROL VARIABLES 
C 

0005 CHARACTER*! KICKER,ONE 
C 
C MONO, M0N02 - MONOTONIC CASE FLAGS (MONO FOR GAUSSIAN CASE, 
C M0N02 FOR HIGH-SNR CASE) 
C REUSE -■ FLAG FOR WHETHER ARCHIVE FILE IS BEING USED 
C GOOD  - FLAG FOR REUSE OF PREVIOUS THRESHOLD (SAVES TIME) 
C FIRST - FIRST-POINT-OF-CASE FLAG 
C ARCFIL - ARCHIVE FILE NAME BUFFER. USE LOGICAL*! RATHER THAN 
C       CHARACTER ARRAY BECAUSE THE COMPILER DOES NOT PROPERLY 
C       PASS CHARACTER ARRAY TO OPEN PROCESSOR (THE PROCESSOR 
C       ONLY SEES THE FIRST WORD OF THE ARRAY AS THE COMPLETE 
C       FILE NAME) 
C NUMBRS - ARRAY OF CHARACTER CONSTANTS FOR CONSTRUCTING NAME IN 
C       ARCFIL 
C 

0006 LOGICAL*! MONO,M0N02,GOOD,REUSE,FIRST, 
$ ARCFIL(!0),NUMBRS(0:3) 

C 
C PLOT ARRAYS AND TEMPS WHICH MUST BE SINGLE PRECISION 
C 

0007 REAL DBRH0(153),PD(!53),DPD,PART,DSNR 
C 
C LIST OF EPSILON VALUES TO RUN 
C 

0008 DIMENSION ELIST(3l 
C 
C FLAG FOR WHETHER A GOOD THRESHOLD IS AVAILABLE FROM THE 
C PREVIOUS POINT 
C 

0009 COMMON /VALID/ GOOD 
C 
C PASSES LN(V**2) TO LIKELIHOOD RATIO FUNCTION TO AVOID 
C UNNECESSARY RECOMPUTATION OF A CONSTANT 
C 

0010 COMMON /LOGCOM/ VSOLN 
C 
C PARAMETERS OF THE CURVES: EPSILON, 1-EPSILON, SNR, V**2 
C 

0011 COMMON /PARMS/     EPS,      OME,   RHO, VSO 
C 
C SWITCHES FOR LIKELIHOOD RATIO SHAPE, MONOTONIC VS. NONMONOTONIC. 
C OEMAX IS THE CRITERION FOR DECIDING THAT A MAXIMUM WILL NOT BE 
C FOUND.  IT MUST BE INITIALIZED BEFORE THE FIRST LIKELIHOOD RATIO 
C IS EXAMINED, THUS IT IS MADE ACCESSIBLE TO THE MAIN DRIVER PROGRAM. 
C 

0012 COMMON /SWITCH/ OEMAX,M0N02,FIRST 
C 
C ■ 
C 
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DETECT.FTN;3 /F77/TR:BL0CKS/WR 

Page 3 

0013 

0014 

0015 

0016 

0017 

0018 

0019 
0020 
0021 
0022 
0023 
0024 

0025 
0026 

0027 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PARAMETERS OF THE LIKELIHOOD RATIO'S SHAPE: 
ETAMAX - THE VALUE OF ETA FOR WHICH LAMBDA(ETA) ATTAINS 

ITS LOCAL MAXIMUM 
ALMAX - LAMBDA(ETAMAX) 
ETAMIN - THE VALUE OF ETA FOR WHICH LAMBDA(ETA) ATTAINS 

ITS LOCAL MINIMUM 
ALMIN - LAMBDA(ETAMIN) 
E3MAX - THE VALUE OF ETA, GREATER THAN ETAMIN, FOR 

WHICH LAMBDA(E3MAX) = LAMBDA(ETAMAX) 
E3PLUS - A SMALL AMOUNT BEYOND E3MAX TO INSURE THAT 

LAMBDA(E3PLUS)-ALMAX > 0, REGARDLESS OF THE 
SIGN OF THE ERROR IN SOLVING FOR E3MAX 

MONO  - MONOTONIC FLAG 

COMMON /FLECT/ ETAMAX,ALMAX,ETAMIN,ALMIN,E3MAX,E3PLUS, 
$ MONO 

ARCHIVE FILE PROTOTYPE NAME 
THE  000  IS CHANGED TO THE INDICES  lEPS,IPFA,IVSQ 
IN THAT ORDER, TO IDENTIFY INDIVIDUAL FILES 

'0','0 I I 
5 D' T',0/ 

37 

DATA ARCFIL/'P','D','0' 
CONSTANTS FOR USE IN ARCFIL 

DATA NUMBRS/'O','!','2' 
LIST OF EPSILONS AT IRREGULAR INCREMENTS 

DATA ELIST/0.01D0,0.1D0,0.5D0/ 
PAGE-EJECT CONSTANT AND INITIAL VALUE 

DATA ONE,KICKER /'I' ,' 7 
CALL INSTALLATION-STANDARD RUN IDENTIFICATION ROUTINE 

CALL JSLGGO 
C 
C 
C 
C 
4099 
4100 

GIVE OPERATOR A CHANCE TO SELECT PLOTTER PEN TO USE 
WITH RIGHT-HAND STALL (#2) THE DEFAULT 

WRITE(5,4100) 
FORMATC ENTER PEN TO USE: 1 FOR LEFT, 2 FOR RIGHT [21: 
READ(5,4101) IPEN 

4101   FORMATfll) - - 
IF(IPEN.E0.O)IPEN=2 
IF(IPEN.NE.1.AND.IPEN.NE.2) GOTO 4099 

C INSTALLATION-STANDARD PLOT INITIALIZATION FOR DIRECT DRIVE 
C OF THE HP7470A PLOTTER 

CALL SETUPfKODE) 
IF(KODE.NE.O) STOP 

C SELECT THE DESIRED PEN 
CALL NEWPEN(IPEN) 

C 
C 
C 

,S) 

UNABLE TO ATTACH PLOTTER' 
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C 
C LOOP ON MIXTURE PARAMETER EPSILON IS OUTERMOST SINCE 
C IT IS A CONSTANT PARAMETER FOR EACH SHEET OF THE PLOTS 
C 

0028 DO 900 IEPS=1,3 
C SET UP FIRST DIGIT OF ARCHIVE FILE NAME 

0029 ARCFIL(3)=NUMBRS(IEPS) 
0030 EPS=ELIST(IEPS) 
0031 0ME=1.DO-EPS 

C INSTALLATION STANDARD PLOT IDENTIFICATION LABEL 
0032 CALL PLOTID 

C REDEFINE THE ORIGIN NEAR LOWER LEFT CORNER OF PAGE IN NORMAL 
C REPORT ORIENTATION, ALLOWING ROOM FOR ADDING FIGURE CAPTION 

0033 CALL PLOTfl.25,6.25,-3) 
C PLOT A PROBABILITY-SCALE AXIS AS THE ORDINATE 

0034 CALL PROBAX(0.,0.,'DETECTION PROBABILITY', 
$     LENCDETECTION PROBABILITY'),8.,0.) 

C PLOT A LINEAR AXIS AS THE ABSCISSA 
0035 CALL AXIS(O.,0.,'SIGNAL TO NOISE RATIO (dB)', 

S    -LENCSIGNAL TO NOISE RATIO (dB) ') ,6. ,270. ,-10. ,5 .) 
C ANNOTATE VALUE OF EPSILON IN UPPER LEFT CORNER OF PLOT AREA 

0036 CALL SYMB0L(7.75,-0.25,0.14,'EPSILON = ',270., 
S LENCEPSILON = ')) 

0037 RTEMP=EPS 
0038 CALL NUMBER(999.,999.,0.14,RTEMP,270.,2) 

C 
C LOOP ON FALSE ALARM RATE 
C 

0039 DO 800 IPFAT=1,3 
C FILL IN SECOND DIGIT OF ARCHIVE FILE NAME 

0040 ARCFIL(4)=NUMBRS(IPFAT) 
C TARGET FALSE ALARM RATE 

0041 PFAT=10.D0**f-IPFAT) 
C 
C LOOP ON VARIANCE RATIO 
C. 

0042 DO 700 IVSQ=0,2 
C FILL IN THIRD DIGIT OF ARCHIVE FILE NAME 

0043 ARCFIL(5)=NUMBRS(IVSQ) 
C 
C TRY TO OPEN ARCHIVE FILE 
C 

0044 0PEN(UNIT=2,NAME=ARCFIL,F0RM='UNF0RMATTED',ERR=3000, 
$     STATUS='OLD',READONLY) 

C 
C- OPEN WAS SUCCESSFUL, JUST READ THE DATA FROM ARCHIVES 
C 

0045 REUSE=.TRUE. 
004fi READ(2) ISUB,(DBRHO( I), 1 = 1 ,ISUB+2) ,(PDn), 1 = 1, ISUB+2) 
0047 GOTO 3001 

C 
C 
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C 
C OPEN WAS NOT SUCCESSFUL, SO WE MUST COMPUTE THE DATA 
C 

0048 3000   REUSE=.FALSE. 
0049 VSQ=10.D0**IVSQ 

C PASS LOG OF VARIANCE RATIO TO LIKELIHOOD RATIO FUNCTION TO 
C AVOID UNNECESSARY RECOMPUTATION OF THE LOGARITHM 

0050 VSQLN=DLOG(VSO) 
C PAGE HEADERS FOR PRINTED OUTPUT TABLES 

0051 WRITE(5,4000) KICKER,EPS,PFAT,VSQ 
0052 4000   F0RMAT(A1,'DETECTION PROBABILITY - PERFECT RECEIVER'/// 

$ ' EPSILON = ',F4.2,'  PFA = ',1PD9.2,' V**2 = ', 
$ 0PF6.1///' RHO (dB)',9X,'PD') 

C KICK ALL PAGES AFTER FIRST 
0053 KICKER=ONE 

C 
C LOOP ON SIGNAL-TO-NOISE RATIO 
C WE NEED ABOUT 30 POINTS PER INCH OF ABSCISSA TO GET A 
C SMOOTH-APPEARING CURVE FROM THE PLOTTER 
C 

0054 DO 600 IRH0=1,151 
C INITIALLY SAY THE LIKELIHOOD RATIO IS NONMONOTONIC 

0055 M0N02=.FALSE. 
C CRITERION FOR DECIDING WE HAVE SEARCHED FAR ENOUGH 
C AND THE LIKELIHOOD RATIO IS MONOTONIC IS THE LOCATION 
C OF THE LOCAL MAXIMUM FOR THE PREVIOUS CASE 

0056 IF(IRHO.GT.l) OEMAX=ETAMAX 
C FIRST-POINT FLAG 

0057 FIRST=IRHO.EQ.l 
C THRESHOLD MIGHT BE GOOD IF NOT THE FIRST POINT 

0058 GOOD=IRHO.GT.l 
C STEP SNR IN DECIBELS -10(0.2)20 

0059 DRTEMP=(IRH0-1)/5.D0-10.D0 
C BUT THE FIRST POINT IS -9.95 DB RATHER THAN -10 DB TO 
C AVOID PROBLEMS WHEN SNR GETS TOO SMALL 

0060 IF(FIRST) DRTEMP=-9.95D0 
C AND SAVE SINGLE-PRECISION VERSION FOR PLOT SOFTWARE 

0061 DBRHO(IRHO)=DRTEMP 
0062 RH0=10,D0**(DRTEMP/10.D0) 
0063 ISUB=IRHO 

C 
C FIND CRITICAL POINTS OF LIKELIHOOD RATIO'S SHAPE 
C 

0064 CALL CRITIC 
C 
C SET UP INTERPOLATION CONSTANTS FOR THRESHOLDS NEAR ETAMAX 
C 

0065 IF((.NOT. MONO) .AND. (.NOT. M0N02)) CALL TERCON 
C 
C FIND THE THRESHOLD FOR SPECIFIED FALSE ALARM PROBABILITY 
C 

0065 CALL GETETA(PFAT,ETA) 
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C 
C COMPUTE THE DETECTION PROBABILITY 
C 

0067 PD(IRHO)=PDET(ETA) 
C -  ■ 
C OUTPUT RESULTS TO PRINT FILE 
C 

0068 WRITE(6,4001) DBRHO(IRHO),PD(IRHO) 
0069 4001   F0RMAT(1X,F8.4,4X,1PE11.4) 

C 
C TRUNCATE THE PLOT AT THE UPPER EDGE OF THE PLOT AREA 
C 

0070 IF(PD(IRHO).GT.0.9999) GOTO 602 
0071 600    CONTINUE 
0072 GOTO 603 

C 
C INTERPOLATE TO EDGE OF GRAPH WHEN CURVE GOES OFF-SCALE 
C 

0073 602    DPD=PD(ISUB)-PD(ISUB-1) 
0074 PART=0.9999-PD(ISUB-1) 
0075 DSNR=DBRH0(ISUB)-DBRH0(ISUB-1) 
0076 DBRH0(ISUB)=DBRH0(ISUB-1]+PART*DSNR/DPD 
0077 PD{ISUB)=0.9999 

C 
C TAKE INVERSE GAUSSIAN DISTRIBUTION FUNCTION OF DATA FOR 
C PLOTTING ON THE PROBABILITY-SCALE AXIS AND SET UP THE 
C SCALING PARAMETERS (LOCALLY GENERATED LIBRARY ROUTINE) 
C 

0078 603    CALL PROBSC(PD,ISUB,a.) 
C 
C SET SCALING PARAMETERS FOR SNR AXIS; THE UNITS/INCH IS 
C NEGATIVE BECAUSE WE ARE PLOTTING IN THE -X DIRECTION OF 
C THE PLOTTER HARDWARE TO GET A GRAPH ORIENTED UPRIGHT ON 
C THE PAGE OF THE REPORT 
C 

0079 DBRH0(ISUB+1)=-10. 
0080 DBRH0(ISUB+2)=-5. 

C 
C COME HERE IMMEDIATELY IF DATA WAS READ FROM AN ARCHIVE 
C FILE 
C 

0081 3001   CONTINUE 
C 
C DRAW THE LINE BETWEEN DATA POINTS 
C 

0082 CALL LINE(PD,DBRHO,ISUB,1,0,0) 
C 
C RAISE THE PEN WHILE COMPUTING NEXT CURVE 
C 

0083 CALL PENUP 
C 
C 
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C 
C IF NO ARCHIVE WAS AVAILABLE, CREATE ONE FOR THE NEW DATA 
C 

0084 IF(.NOT.REUSE) THEN 
0085 0PEN(UNIT=2,STATUS='NEW',FILE=ARCFIL,FORM='UNFORMATTED') 
0086 WRITE(2) ISUB,(DBRHO(I),I=l,ISUB+2),(PD(I),1=1,ISUB+2) 
0087 END IF 
0088 CL0SE(UNIT=2) 

C !'■•.' 

C LOOPS END HERE 
C 

0089 700 CONTINUE 
0090 800 CONTINUE 

C 
C START NEW PAGE WHEN LOOP ON EPSILON INCREMENTS 
C 

0091 IF(IEPS.EQ.3) THEN 
C LAST PAGE, JUST FLUSH PLOT BUFFER 

0092 CALL PL0T(0.,0.,999) 
0093 ELSE 

C INSTALLATION-STANDARD NEW PLOT ROUTINE ASKS FOR NEW 
C PAGE, WAITS FOR SIGNAL FROM TERMINAL, AND RESETS THE 
C PLOT ORIGIN TO INITIAL LOCATION 

0094 CALL NEWPLT 
0095 END IF 
0096 900 CONTINUE 

C ■■;             ; 

C ALL DONE 
C '     ■ ■ . r. ■  . ■ ■  . 

0097 STOP 'DONE' 
0098 END 
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0001 DOUBLE PRECISION FUNCTION PDETl(ETA) 

Page 8 

C 
C 
c 
c 
c 
c 
c 
L 
c 

ELEMENTARY DETECTION PROBABILITY FORMULA 
FOR ENVELOPE SQUARED GREATER THAN A THRESHOLD ETA 

THIS USES MARCUM'S Q-FUNCTION FUNCTION FROM LIBRARY. 
THE LIBRARY ROUTINE IS BASED ON SHNIDMAN'S ALGORITHM 
FROM IEEE TRANS. ON INFORMATION THEORY, VOL. IT-22, 
NO. 6, NOV. 1976, PP 746-751. 

0002 IMPLICIT DOUBLE PRECISION (A-H,0-Z) 
0003 COMMON /PARMS/ EPS,OME,RHO,VS0 
0004 QA1=DSQRT(2.D0*RH0) 
0005 QA2=DSQRT(2.D0*RHO/VSQ) 
0006 QB1=DSQRT(ETA) 
0007 QB2=DSQRT(ETA/VSQ) 
0008 PDETl=0ME*QfQAl,QBl)+EPS*Q(0A2,0B2) 
0009 RETURN 
0010 END 
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0001 

0002 
0003 

0004 
0005 
0006 
0007 

0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 

C 
C 
C 
C 
C 
c 
c 
c 

DOUBLE PRECISION FUNCTION PDET(ETA) 

OVER-ALL DETECTION PROBABILITY COMPUTATION 

IF THERE IS ONLY ONE SOLUTION TO LAMBDA(ETA) = CONST, 
PDET(ETA1 = PDETlfETA) 

BUT IF THERE ARE THREE SOLUTIONS TO LAMBDA(ETA) = CONST, 
PDET(ETA) = PDETKETA) - PDET1(R00T2) + PDET1(R00T3) 

IMPLICIT DOUBLE PRECISI0N(A-H,0-Z) 
LOGICAL*! UNIQUE 

FLAG FOR UNIQUE ROOT REGION ON A NONMONOTONIC LIKELIHOOD 
RATIO IS PASSED FROM THE ROOT FINDER WHEN SETTING THRESHOLD 
TO MEET FALSE ALARM CRITERION 

COMMON /WUNRUT/ UNIQUE 
IFfUNIQUE) THEN 
PDET=PDET1(ETA) 

ELSE 
FIND THE OTHER TWO ROOTS LAMBDA(R00T2)=LAMBDA(R00T3)=LAMBDA(ETA) 

CALL R00TER(ETA,R00T2,R0QT3) 
PD11=PDET1(ETA) 
PD12=PDET1(R00T2) 
PD13=PDET1(R00T3) 
PDET=PD11-PD12+PD13 

END IF 
RETURN 
END 
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0001 DOUBLE PRECISION FUNCTION PF(ETA) 
C 
C OVER-ALL FALSE ALARM PROBABILITY COMPUTATION 
C 
C IF THERE IS ONLY ONE SOLUTION TO LAMBDA(ETA) = CONST, 
C PFfETA) = FAP(ETA) 
C BUT IF THERE ARE THREE SOLUTIONS TO LAMBDA(ETA) = CONST, 
C PF(ETA) = FAP(ETA) - FAP(R00T2) + FAP(R00T3) 
C 

0002 IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
0003 L0GICAL*1 MONO 
0004 ' COMMON /PARMS/ EPS,OME,RHO,VSQ 
0005 COMMON /TERROO/ ETA1,TER001,TER002,PFTER1,PFTERX 
0005 COMMON /ELECT/ ETAMAX,ALMAX,ETAMIN,ALMIN,E3MAX,E3PLUS, 

$ MONO 
C 
C ***  CAUTION  *** 
C 
C THIS FUNCTION ASSUMES ETA IS IN THE DOMAIN OF THE FUNCTION... 
C ... SO DON'T CALL IT WITH ETA BETWEEN ETAMAX AND E3MAX 
C 

0007 R1=RATI0(ETA) 
C 
C THIS TEST FOR WHETHER THE SPECIFIED ETA LIES IN THE 3-ROOT 
C REGION MUST MAKE USE OF LOCATION OF RIGHT-MOST ROOT AS WELL 
C AS THE VALUE OF THE LIKELIHOOD RATIO TO AVOID PROBLEMS DUE 
C TO ROUND-OFF AND ERROR TOLERANCE IN SOLVING FOR THE THIRD 
C ROOT 
C 

0008 IF(MONO .OR. (Rl.LE.ALMIN .OR. Rl.GT.ALMAX 
$        .OR. ETA.GE.E3MAX)) THEN 

C 
C HAVE ONLY ONE ROOT 
C 

0009 PF=FAP(ETA) 
C 

0010 ELSE IF(ETAMAX-ETA.GT.1,0-5 .AND. 
$ Rl.GT.ALMIN+l.D-5) THEN 

C 
C HAVE THREE ROOTS, NOT NEAR THE LOCAL EXTREMA - FIND THEM 
C 

0011 CALL ROOTER(ETA,ROOT2,ROOT3) 
C 
C FACTOR EQUATION FOR OVERALL PF TO DEFER UNDERFLOWS A BIT 
C 

0012 PF1=DEXP(-ETA/2.Dn)*(l.DO-DEXP((ETA-ROOT2)/2.DO)+ 
S DEXP((ETA-R00T3)/2.D0)) 

0013 ETV=ETA/VSQ 
0014 PF2=DEXP(-ETV/2.D0)*(1.D0-DEXP((ETV-R00T2/VS0)/2.nO)+ 

$ ■    DEXP((ETV-R00T3/VS0)/2.D0)) 
0015 PF=0ME*PF1+EPS*PF2 
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0016 ELSE 
C NEAR EITHER OF THE LOCAL EXTREMA, WE MUST USE 
C SPECIAL CARE TO AVOID ROUND-OFF PROBLEMS 

0017 IF(ETAMAX-ETA.LE.l.D-5) THEN 
C VERY CLOSE TO THE LOCAL MAXIMUM 

0018 IFfETA.NE.ETAMAX) THEN 
C NEAR (BUT NOT EXACTLY AT) THE LOCAL MAX, INTERPOLATE 
C THE PROBABILITY. THIS AVOIDS SEARCHING FOR ROOTS OF 
C THE EQUATION  LAMBDA(ETA) = CONST IN A REGION WHERE 
C ROUND-OFF MAY MAKE THE SOLUTION IMPOSSIBLE 

0019 EDEL=ETA-ETA1 
0020 FRAC=EDEL/(ETAMAX-ETAn 
0021 PDEL=PFTERX-PFTER1 
0022 PART=FRAC*PDEL 
0023 PF=PFTER1+PART 
0024 ELSE 

C EXACTLY AT THE LOCAL MAXIMUM AS FOUND BY SUBROUTINE CRITIC; 
C TREAT THIS AS A SPECIAL CASE TO AVOID ANY POSSIBILITY OF 
C STARTING TO RUN DOWN THE CURVE TO THE LOCAL MINIMUM WHEN 
C WE SHOULD REALLY JUMP TO THE THIRD ROOT AND BEYOND WHEN 
C SEARCHING FOR THE THRESHOLD TO SATISFY THE FALSE ALARM 
C CRITERION. 

0025 PF=PFTERX 
0026 END IF 
0027 ELSE 

C 
C . NEAR THE LOCAL MIN, TREAT AS IF AT LOCAL MIN 
C (HERE ROUNDOFF IS NOT AS SEVERE A PROBLEM, 
C AS IT WON'T CAUSE THE SEARCH TO GET STUCK) 
C 

0028 PF=FAP(ETA) 
0029 END IF 
0030 END IF 
0031 RETURN ■ ' 
0032 END 
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0001 DOUBLE PRECISION FUNCTION FAP(ETA) 
C 
C ELEMENTAL FALSE ALARM PROBABILITY COMPUTATION 
C 
C PROB(ENVELOPE SQUARED > THRESHOLD) 
C 

0002 IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
0003- COMMON /PARMS/ EPS,OME,RHO,VSQ 
0004 FAP=OME*DEXP(-ETA/2.D0)+EPS*DEXP(-0.5D0*ETA/VSQ) 
0005 RETURN 
0006 END 
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0001 DOUBLE PRECISION FUNCTION RATIO(X) 
C 
C COMPUTE THE LIKELIHOOD RATIO FUNCTION 
C 

0002 IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
0003 COMMON /PARMS/ EPS,OME,RHO,VSQ 

C L0G(V**2) PASSED IN FROM MAIN PROGRAM TO AVOID RECOMPUTATION 
0004 COMMON /LOGCOM/ VSQLN 
0005 00VM1=1.D0/VSQ-1.D0 
0006 DEN0M=0ME*DEXP(VSQLN+0.5D0*X*00VM1) + EPS 
0007 BARG=DSQRT(2.D0*RH0*X) 

C 
C ***      CAUTION      *** 
C 
C THE SUBROUTINE DXBESI COMPUTES 
C 
C EXP(-Z) * In(Z) 
C 
C WHERE In(Z) IS THE MODIFIED BESSEL FUNCTION OF 
C ORDER n. THIS IS DONE TO AVOID OVERFLOWS. 
C THUS WE MUST REMOVE THE EXPONENTIAL WEIGHTING 
C BY ADDING THE ARGUMENT OF THE BESSEL FUNCTION TO 
C THE ARGUMENT OF THE EXPONENTIAL IN THE LIKELIHOOD 
C RATIO'S FORMULATION. THIS AVOIDS (AS LONG AS POSSIBLE) 
C THE SITUATION OF 
C (UNDERFLOWING EXPONENTIAL) * (OVERFLOWING BESSEL FUNCTION) 
C =  (GOOD ANSWER) 
C 
C ARGUMENT, ORDER, RESULT, ERROR CODE 

0008 CALL DXBESI( BARG, 0,  BESSEL,   KODE) 
0009 IF(KODE.NE.O) THEN 
0010 WRITE(5,1) KODE 
0011 1 FORMATC DXBESI - 1- KODE = ',12) 
0012 IF(K0DE.NE.3) STOP 'FATAL ERROR FROM DXBESI' 
0013 ■  END IF 
0014 PART1=0ME*VS0*DEXP(0.5D0*X*00VM1-RH0+BARG)*BESSEL 
0015 BARG=BARG/VSQ 
0016 CALL DXBESI(BARG,0,BESSEL,KODE) 
0017 IF(KODE.NE.O) THEN 
0018 WRITE(5,2) KODE 
0019 2 FORMATC DXBESI - 2- KODE = ',12) 
0020 IF(K0DE.NE.3) STOP 'FATAL ERROR FROM DXBESI' 
0021 END IF 
0022 PART2=(EPS*DEXP(BARG-RH0/VSO))*BESSEL 
0023 RATI0=(PARTl+PART2)/nEN0M 
0024 RETURN 
0025 END 
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0001 DOUBLE PRECISION FUNCTION ROOTF(X) 
C 
c 
C THE FUNCTION 
C 
C       RATIO(X) - (TARGET VALUE) 
C 
C TO PASS TO THE ROOT-FINDING ROUTINES WHICH SOLVE 
C THE EQUATION F(X) =0 FOR X 
C 
c 

0002 IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
C 
C PASS IN THE TARGET VALUE OF THE FUNCTION 
C 

0003 COMMON /TARGET/ FIND 
C 
C COMPUTE IT 
C 

0004 ROOTF=RATIO(X)-FIND 
0005 RETURN 
0006 END 
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0001 SUBROUTINE CRITIC 
C 
C SUBROUTINE TO DETERMINE SHAPE OF THE LIKELIHOOD 
C RATIO AND ITS CRITICAL VALUES 
C 
C DETERMINES MONOTONIC VS. NONMONOTONIC.  IF NONMONOTONIC 

. C THIS ROUTINE GOES ON TO FIND: 
C 
C     THE LOCAL MAXIMUM (ALMAX) AND VALUE OF ARGUMENT FOR 
C     WHICH IT OCCURS (ETAMAX) 
C 
C     THE LOCAL MINIMUM (ALMIN) AND VALUE OF ARGUMENT FOR 
C     WHICH IT OCCURS (ETAMIN) 
C 
C     THE ARGUMENT fE3MAXl, GREATER THAN ETAMIN, FOR WHICH 
C     LAMBDA(E3MAX) = LAMBDA(ETAMAX) 
C 
C     A POINT (E3PLUS) SLIGHTLY BEYOND E3MAX FOR WHICH IT 
C     IS GUARANTEED THAT LAMBDA(E3PLUS) > LAMBDAfETAMAX), 
U     REGARDLESS OF ERRORS IN THE SOLUTION AND ROUNDOFF 
C 
C 
C THE ROUTINE ALSO SETS UP THE MONOTONIC FLAGS MONO AND M0N02 
C ■  ,   . 

c 
0002 IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
0003 EXTERNAL ROOTF 
0004 L0GICAL*1 MONO,M0N02,FIRST 
0005 COMMON /SWITCH/ 0EMAX,M0N02,FIRST 
0006 COMMON /PARMS/ EPS,OME,RHO,VSO 
0007 COMMON /ELECT/ ETAMAX,ALMAX,ETAMIN,ALMIN,E3MAX,E3PLUS, 

$ MONO 
0008 COMMON /TARGET/ FIND 

C ■ . 

C IF PREVIOUS CASE WAS MONOTONIC, THEN THIS ONE FOR HIGHER 
C SNR WILL ALSO BE MONOTONIC.  THE GAUSSIAN CASE (V**2 = 1) 
C IS ALWAYS MONOTONIC. 
C 

0009 IF(M0N02.0R.VSQ.EQ.1.D0) THEN 
C 
C IF MONOTONIC, SAY IT IS SO AND WE ARE DONE 
C 

0010 MONO=.TRUE. 
0011 RETURN 
0012 ELSE 

C 
U SAY IT IS NOT MONOTONIC, GO ON TO FIND EXTREMA, ETC. 
C 

0013 MONO=.FALSE. 
0014 END IF 

C 
C 
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C 
C LOCATE THE LOCAL MAXIMUM 
C (THE SERIAL SEARCH IS NOT NECESSARILY FAST, BUT 
C THE TECHNIQUE IS ROBUST PROVIDED THE INITIAL STEP 
C IS SMALL ENOUGH) 
C 

0015 EINC=0.1D0 
0016 E1=1.D0 
0017 91 R1=RATI0(E1) 
0018 1 E2=E1+EINC 
0019 R2=RATI0(E2) 
0020 IF(R2.LT.R1) GOTO 10 
0021 R1=R2 
0022 E1=E2 
0023 IF(FIRST) THEN 

C IF THE FIRST TIME AROUND FOR THIS PARAMETER SET, 
C SEARCH FOR MAX UNCONDITIONALLY 
C (THIS PRESUMES STARTING AT LOW SNR WHERE IT IS SURE 
C TO BE NONMONOTONIC) 

0024 GOTO 1 
0025 ELSE 

C STOP SEARCH AT THREE TIMES LOCATION OF MAX OF 
C PREVIOUS SNR AND DECLARE IT MONOTONIC IF WE GET THIS 
C FAR WITHOUT FINDING A LOCAL MAXIMUM 

0026 IF(E2.LE.3.DO*OEMAX) THEN 
C ... KEEP ON SEARCHING 

0027 GOTO 1 
0028 ELSE 

C ... TOO FAR, IT MUST BE MONOTONIC (AS WILL 
C THE REST OF THIS RUN OF SNR'S) 

0029 M0N02=.TRUE. 
0030 RETURN 
0031 END IF 
0032 END IF 

C STOPPING CRITERION IS 1 PART IN 100,000,000 
0033 10 IF(EINC.LE.1.D-8*E1) GOTO 20 

C 
C BACK UP ONE STEP JUST IN CASE WE HAVE THE FOLLOWING SITUATION: 
C 
C . . 
C .    . 
C 
C 
C 
C 
C El-EINC  El     E2 
C 
C WHERE F(El-EINC) < F(E1) AND F(E1) > F(E2) BUT TRUE MAX 
C LIES BETWEEN El-EINC AND El 

0034 E1=E1-EINC 
0035 EINC=EINC/10.D0 
0035 GOTO 91 
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0037 
0038 

0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 

0047 
0048 
0049 
0050 

0051 
0052 

0053 

0054 
0055 
0056 
0057 
0058 

0059 
0060 
0061 

0062 

0063 
0054 
0065 
0066 
0067 
0068 

LAM8DA(E3MAX) = LAMBDA(ETAMAX) 

C HAVE LOCATED THE MAXIMUM 
C 
20    ETAMAX=E1 

ALMAX=R1 
C NOW FIND THE MINIMUM 

EINC=1.D0 
2     E2=E1+EINC 

R2=RATI0(E2) 
IF(R2.GT.R1) GOTO 30      : 
R1=R2 
E1=E2 
GOTO 2 

30     IF(EINC.LE.1.D-8*E1) GOTO 40 
C SIMILAR REASON FOR BACKING UP A STEP 

E1=E1-EINC 
R1=RATI0(E1) 
EINC=EINC/10.D0    •  ^ 
GOTO 2 

C HAVE LOCATED THE MINIMUM  ' . . 
ETAMIN=E1 
ALMIN=R1 

NOW TO FIND SOLUTION FOR 
WHERE E3MAX > ETAMIN 
SET UP THE TARGET VALUE FOR ROOT FINDER " 

FIND=ALMAX 
FIND BRACKETING VALUES El AND E2 SUCH THAT 

LAMBDA(El) < LAMBDAfETAMAX) < LAMBDA(E2) 
EINC=VSO 
E2=E1*2.D0 
R2=RATI0(E2) 
IF(R2.LE.ALMAX) THEN 

E1 = E2 
NOT CRITICAL HOW CLOSE THE VALUES ARE TO THE SOLUTION, 
SO DOUBLE AT EACH STEP FOR SPEED 

E2=E2*2.D0 
GOTO 3 

END IF 
DO A SERIAL SEARCH BETWEEN BRACKETING VALUES 

CALL SERETA(R00TF,E3MAX,E1,E2-E1,E2) 
GUARANTEE A POINT WHERE ERROR IS POSITIVE 
BUT NOT TOO MUCH BEYOND THE TRUE ROOT.  THIS IS 
REQUIRED TO KEEP THE SEARCH FOR THRESHOLD TO MEET 
FALSE ALARM CRITERION FROM GETTING STUCK GOING IN 
THE WRONG DIRECTION. 

E3PLUS=E3MAX 
IF(R00TF{E3PLUS).GT.0.D0) GOTO 670 
E3PLUS=E3PLUS*1.001 
GOTO 699 
RETURN 
END 

40 

C 
c 
c 

c 
c 

c 
c 
c 
c 
c 

699 

670 
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0001 SUBROUTINE R00TER(ETA,R00T2,R00T3) 
C 
C SUBROUTINE TO FIND THE SECOND AND THIRD 
C ROOTS OF EQUATION LAMBDA(ETA) = CONST, 
C GIVEN THE FIRST (SMALLEST) SOLUTION ETA 
C 

0002 IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
0003 EXTERNAL ROOTF 
0004 L0GICAL*1 MONO 
0005 COMMON /TARGET/ FIND 
0006 COMMON /FLECT/ ETAMAX,ALMAX,ETAMIN,ALMIN,E3MAX,E3PLUS, 

S MONO 
C SET UP TARGET VALUE FOR ROOT FINDER 

0007 FIND=RATIO(ETA) 
C 
C FIND THE ROOT BETWEEN ETAMAX AND ETAMIN 
C USING MUELLER'S ITERATION SUBROUTINE FROM DEC'S SCIENTIFIC 
C SUBROUTINE PACKAGE, MODIFIED FOR DOUBLE PRECISION 
C 

0008 CALL DRTMI(R00T2,ERROR,ROOTF,ETAMAX,ETAMIN,5.D-8,150,KODE) 
0009 IF(KODE.NE.O) THEN 
0010 WRITE(5,100) 1,K0DE 
0011 100     FORMATf DRTMI ERROR IN ROOTER - ',11,' - CODE = ',12/ 

$        ' USING SERIAL SEARCH') 
C IF MUELLER'S ITERATION FAILS, FALL BACK TO THE SLOW BUT 
C FAIRLY CERTAIN SERIAL SEARCH. THIS CAN NOT BE THE SAME 
C ROUTINE AS USED TO FIND THE FALSE ALARM THRESHOLD, AS WE 
C CAN NOT ALLOW RECURSION TO OCCUR (FALSE ALARM THRESHOLD 
C SEARCH CALLS PF WHICH IN TURN CALLS ROOTER) 

0012 CALL SER00T(R00TF,R00T2,ETAMAX,ETAMIN-ETAMAX) 
0013 END IF 

C 
C FIND THE ROOT BETWEEN ETAMIN AND E3MAX 
C 
C FIRST TRY MUELLER'S METHOD. 
C HERE WE MUST USE THE POINT E3PLUS TO BE SURE THE BASIC 
C CRITERION FOR MUELLER'S METHOD IS SATISFIED. 
C 

0014 CALL DRTMI(R00T3,ERROR,ROOTF,ETAMIN,E3PLUS,5.D-8,150,KODE) 
0015 IF(KODE.NE.O) THEN 
0016 WRITE(5,100) 2,KODE 

C IF IT FAILS, SERIAL SEARCH 
0017 CALL SER00T(R00TF,R00T3,ETAMIN,E3PLUS-ETAMIN) 
0018 END IF 
0019 RETURN 
0020 END 
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0001 DOUBLE PRECISION FUNCTION FINDPF(ETA) 
C 
C COMPUTE THE FUNCTION 
C 
C    PF(ETA) - (TARGET FALSE ALARM RATE) 
C 
C FOR USE BY ROOT FINDERS IN SEARCHING FOR FALSE 
C ALARM THRESHOLD 
C 

0002 IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
C 
C PASS IN THE TARGET VALUE 
C 

0003 COMMON /PFATAR/ FALSEA 
C 
C COMPUTE THE VALUE 
C 

0004 FINDPF=PF(ETA)-FALSEA 
0005 RETURN 
0006 END 
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0001 SUBROUTINE GETETA(PFAT,ETA) 
C 
C SUBROUTINE TO FIND THE THRESHOLD FOR WHICH 
C THE FALSE ALARM PROBABILITY IS A SPECIFIED 
C VALUE 
C 

0002 IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
0003 EXTERNAL FINDPF 
0004 L0GICAL*1 MONO,GOOD,UNIQUE 
0005 COMMON /WUNRUT/ UNIQUE 
0006 COMMON /VALID/ GOOD 
0007 COMMON /PFATAR/ FALSEA 
0008 COMMON /FLECT/ ETAMAX,ALMAX,ETAMIN,ALMIN,E3MAX,E3PLUS, 

S MONO 
C SET UP TARGET VALUE FOR ROOT FINDERS 

0009 FALSEA=PFAT 
C 
C IF THE PREVIOUS CASE WAS A SINGLE ROOT, THEN IF WE 
C STILL HAVE A SINGLE ROOT THE THRESHOLD WILL BE THE 
C SAME AND WE DON'T HAVE TO WASTE TIME RECOMPUTING IT. 
C 

0010 IF(GOOD.AND.UNIQUE) THEN 
0011 ALAM=RATIO(ETA) 

C IF LAMBDA(PREVIOUS ETA) IS NOT BETWEEN THE LOCAL MINIMUM 
C AND THE LOCAL MAXIMUM VALUES OF LAMBDA, THEN THERE IS ONLY 
C THE ONE SOLUTION AND THE VALUE OF ETA REMAINS GOOD 
C FOR THIS CASE. 

0012 IF(ALAM.LE.ALMIN .OR. ALAM.GE.ALMAX) RETURN 
0013 END IF 
0014 nil   IF(MONO) THEN 

C IF MONOTONIC, ONLY ONE ROOT TO FIND. 
C SO WE SEARCH FROM 1.0 ON UP TO NEAR OVERFLOW UNTIL 
C WE FIND THE ROOT, USING SERIAL SEARCH TECHNIQUE. 

0015 CALL SERETA(FINDPF,ETA,1.D0,1.D0,1.D38) 
C AND FLAG IT AS A UNIQUE ROOT 

0016 UNIQUE=.TRUE. 
0017 ELSE 

C WE MIGHT HAVE 3 ROOTS 
C FIRST TEST TO SEE IF BEYOND THE 3-ROOT AREA 
C 

0018 PFEMAX=FINDPF(ETAMAX) 
0019 IF(PFEMAX.GT.O.DO) THEN 

C 
C WE HAVE ONLY ONE ROOT BEYOND E3MAX IF FALSE ALARM 
C RATE IS TOO HIGH AT E3MAX.  START SEARCHING 
C FROM E3MAX ON TOWARDS AN OVERFLOWING VALUE. 
C 

0020 CALL SERETA(FINDPF,ETA,E3MAX,1.D0,1.D38) 
C AND FLAG IT AS A UNIQUE ROOT 

0021 UNIQUE=.TRUE. 
0022 RETURN 
0023 END IF 
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C 
C ELSE WE ARE IN THE 3-ROOT REGION 
C ■       ." 

0024 IF(GOOD) THEN 
C 
C IF WE HAVE JUST STEPPED SNR WITHOUT CHANGING V**2 AND PFA, 
C THE PREVIOUS THRESHOLD MAKES A GOOD STARTING POINT FOR THE 
C SEARCH 
C ^. ..- 

0025 XLEFT=ETA 
0026 ELSE 

C 
C BUT OTHERWISE WE MUST START FROM THE BEGINNING 
C 

0027 XLEFT=1.D0 
0028 END IF 

C SERIAL SEARCH TO BRACKET THE ROOT 
0029 555 YLEFT=FINDPF(XLEFT) 
0030 5 IF(YLEFT.GT.O.DO) THEN 

C LEFT ENDPOINT FUNCTION > 0, SO INCREASE RIGHT HAND LIMIT 
0031 XRIGHT=XLEFT*2.D0 
0032 IF(XRIGHT.GT.ETAMAX.ANn.XLEFT.LT.ETAMAX) THEN 

C RIGHT END POINT MIGHT BUMP INTO ETAMAX, BE SURE WE 
C DON'T EXCEED IT OR THE SEARCH WILL GO WILD 

0033 XRIGHT=ETAMAX 
0034 END IF 
0035 ELSE 

C LEFT ENDPOINT FUNCTION < 0, SO WE NEED TO TRY A 
C SMALLER THRESHOLD FIRST; CUT LEFT ENDPOINT.   • 

0036 XLEFT=XLEFT/2.D0 
0037 GOTO 555 
0038 END IF 
0039 YRIGHT=FINDPF(XRIGHT) 

C IF ROOT LIES BETWEEN THE PROSPECTIVE ENDPOINTS WE ARE READY 
C TO CALL THE ROOT FINDER 

0040 IF(YRIGHT*YLEFT.GE.O.DO) THEN 
C BUT IF NOT THEN MUST MOVE THE INTERVAL UNTIL WE FIND ONE THAT 
C BRACKETS THE ROOT. TO REDUCE SEARCH REGION, THROW OUT THIS 
C WHOLE INTERVAL IN WHICH WE KNOW THE ROOT DOES NOT LIE. 

0041 XLEFT=XRIGHT 
0042 YLEFT=YRIGHT 
0043 GOTO 5 
0044 END IF 

C DO THE SERIAL SEARCH FOR THE ROOT 
0045 CALL SERETA(FINDPF,ETA,XLEFT,XRIGHT-XLEFT,XRIGHT) 
0046 ALAM=RATI0(ETA) 

C DETERMINE IF THE ROOT IS UNIQUE 
0047 UNIQUE=ALAM.LE.ALMIN .OR. ALAM.GE.ALMAX 
0048 END IF 
0049 RETURN 
0050 END 
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0001 SUBROUTINE SERETA(FUNC,ETA,X1,DX,SULIM) 
C 
C SERIAL SEARCH ROUTINE TO USE WHEN SOLVING 
C FOR THRESHOLD TO MEET FALSE ALARM CRITERION 
C 

0002 IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
0003 E1=X1 
0004 P1=FUNC(E1) 
0005 IF(Pl.EQ.O.DO) THEN 

C HAPPENED TO HIT IT EXACTLY AT LEFT END POINT 
0006 ETA=E1 
0007 RETURN 
0008 END IF 
0009 EINC=DX 
0010 1 E2=E1+EINC 

C AVOID THE ROUNDOFF IN THE MAX SEARCH LIMIT 
0011 IF(E2.GT.SULIM) E2=SULIM 
0012 P2=FUNC(E2) 
0013 IF(P2.EQ.0.D0) THEN 

C JUST HAPPENED TO HIT IT EXACTLY 
0014 ETA=E2 
0015 RETURN 
0016 ELSE IF(DSIGN(l.D0,Pl).E0.DSIGNfl.D0,P2)) THEN 

C 
C KEEP STEPPING (IF HAVEN'T BUMPED INTO LIMIT; THIS IS 
C NEEDED TO AVOID GOING OUT OF THE REGION OF DEFINITION 
C OF THE FUNCTION WHEN SEARCHING TO THE LEFT OF ETAMAX) 
C 

0017 IF(E2.E0.SULIM1 STOP 'UPPER SEARCH LIMIT TOO LOW' 
0018 E1=E2 
0019 P1=P2 
0020 GOTO 1 
0021 ELSE 

C WE HAVE IT BRACKETED 
C ... IF VERY STEEP SLOPE, JUMP TO THE INTERPOLATION STEP 

0022 IF(ABS(P1-P2)/EINC.GE.2000.D0) GOTO 100 
C ... OR IF HAVE IT TO ENOUGH PLACES JUMP TO INTERPOLATION STEP 

0023 IF(E1/EINC.GT.2.D8) GOTO 100 
C ... OTHERWISE CUT INCREMENT AND TRY AGAIN 

0024 EINC=EINC/10.D0 
0025 GOTO 1 
0026 END IF 

C 
C INTERPOLATE BETWEEN FINAL TWO BRACKETING VALUES TO OBTAIN 
C A MORE PRECISE APPROXIMATION TO THE ROOT 
C 

0027 100 DP=P2-P1 
0028 PP=-P1 *'. ■■' 
0029 ETA=E1+EINC*PP/DP 
0030 RETURN 
0031 END 
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0001 SUBROUTINE SEROOTfFUNC,ETA,X1,DX) 
C 
C SERIAL SEARCH FOR ROOT OF EQUATION FUNC(X) = 0 
C FOR USE IN FINDING ROOTS OF LIKELIHOOD RATIO.  THIS 
C SECOND ROUTINE IS NEEDED TO AVOID RECURSION. 
C 
C THE SEARCH LOGIC IS THE SAME AS ROUTINE SERETA. 
C 

0002 IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
0003 E1=X1 
0004 P1=FUNC(E1) 
0005 IF(Pl.EQ.O.DO) THEN ■' 
0006 ETA=E1 
0007 RETURN 
0008 END IF 
0009 EINC=DX 
0010 1 .  E2=E1+EINC 
0011 P2=FUNC(E2) 
0012 IFfP2.EQ.0.D0) THEN 

C 
C JUST HAPPENED TO HIT IT EXACTLY ■ 
C ■ ■ • 

0013 ETA=E2 
0014 RETURN 
0015 ELSE IF(DSIGN(1.D0,P1).E0.DSIGN(1.D0,P2)) THEN 

C 
C KEEP STEPPING     ,  , .-  n   ■ . 
C -   " 

0016 E1=E2 
0017 P1=P2 
0018 GOTO 1 , 
0019 ELSE 

C 
C WE HAVE IT BRACKETED 
C 
C ... IF VERY STEEP SLOPE, JUMP TO THE INTERPOLATION STEP 

0020 IF(ABS(P1-P2)/EINC.GE.2000.D0) GOTO 100 
C ... OR IF HAVE IT TO ENOUGH PLACES JUMP TO INTERPOLATION STEP 

0021 IF(E1/EINC.GT.2.D8) GOTO 100 
C ... OTHERWISE CUT INCREMENT AND TRY AGAIN 

0022 EINC=EINC/10.D0 
0023 GOTO 1 
0024 END IF 

C 
C INTERPOLATE BETWEEN FINAL TWO BRACKETING VALUES 
C 

0025 100 DP=P2-P1 
0026 PP=-P1 
0027 ETA=E1+EINC*PP/DP 
0028 RETURN 
0029 END 
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0001 SUBROUTINE TERCON 
C 
C SET UP INTERPOLATION CONSTANTS FOR USE WHEN THRESHOLD IS 
C NEAR ETAMAX 
C 
C THIS IS A TIME-SAVER, DO IT ONLY ONCE RATHER THAN 
C RECOMPUTE THINGS WITHIN A SUBPROGRAM WHICH IS CALLED 
C MANY TIMES IN THE COURSE OF SETTING THE THRESHOLD. 
C 

0002 IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
0003 L0GICAL*1 MONO 
000^ COMMON /ELECT/ ETAMAX,ALMAX,ETAMIN,ALMIN,E3MAX,E3PLUS, 

$ MONO 
0005 COMMON /TERROO/ ETA1,TER001,TER002,PFTER1,PFTERX 

C 
C BACK OFF A SMALL DISTANCE FROM THE MAXIMUM 
C 

0006 ETAl=ETAMAX-l.D-5 
C 
C SOLVE THE EQUATION FOR ROOTS LAMBDA(ETA) = LAMBDA(ETAl) 
C 

0007 CALL ROOTER(ETA1,TER001,TER002)        -   - 
C 
C FALSE ALARM PROBABILITY WHEN ETA=ETAMAX 
C 

0008 PFTERX=FAP(E3MAX) 
C 
C FALSE ALARM PROBABILITY WHEN ETA = ETAMAX-0.00001 
C 

0009 PFTER1=FAP(ETA1)-FAP(TER001)+FAP(TER002) 
0010 RETURN 
0011 END 
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APPENDIX 3B: 

NUMERICAL TECHNIQUE FOR EVALUATING MULTIPLE SAMPLE DETECTOR PERFORMANCE 

Given the detector form 

"K t' = Z " K) ^ Z "k ^ "• '^"-1' 

the probabilities of false alarm and detection are given by 

Pp;^(n) = Pr 

and 

^u^ > n|Ho (3B-2) 

k       ' 

I k       ) 

For independent |x. >, and therefore independent ju, |, the characteristic 

function of the sum is 

*U(^) = n % (-) (3B-4) 
k   ^ 

which implies that the probability density function (pdf) for the sum U is 

the K-fold convolution of the pdf's for the individual |UK>: 

p.,(a) = p  (a) * p  (a) *•••*?,, (ct).        (3B-5) 
U       Ui U2 U|^ 

Our technique is based on using a discrete pdf to approximate the 

pdf of the individual detection statistics, assumed to be identically dis- 

tributed, with 
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N-l 

p^ (a) = p^(a) = ^  p^ 6(a-na), (jg.g^) 

^ n=0 

where 

= PrlnA < u < (H+DAL n=0, 1,...,N-1       (3B-6b) 

and the number of terms N and quantization step A are traded off to satisfy 

the requirement that 

N-l 

n=0 

with good precision. The K-fold convolution of the discrete pdf is 

accomplished iteratively, with 

min(N-l,n) 
p(2) =     y      p p    n=0, l,...,2N-2 

m=max{0,n-N+l) 

(3B-7) 

min(N-l,n) 
p(3) =     y p p(2), n=0, l,„..,3N-3       (3B-8) 
^n        £_      m ^n-m 

m=max(0,n-2N+2) 

and, ultimately, 

min{n,N-l) 
p(K)= Y. P^P^-^"-    n=0, l....,K(N-l). 

m=max(0,n-r(N-l)) _ (3B-9) 

Using this convolved discrete density {p^*^^} > the Pp^ and P^  are 

approximately calculated using 
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K(N-l) 

Z ,(K) 
FA    L- ■'n 

n=[n/A] 
(3B-6) 

K(N-l) 

\- E ,(K) (3B-7) 

n=[n/A] 

The different hypotheses HQ and H^ are taken into account by 

calculating the original discrete set of probabilities according to 

"" = PrjnA < U|^ < (n+l)A|HJ  i = 0, 1 

Prjx, cRjH.j, 
(38-8) 

where R is the region of x. which corresponds to nA < u, =u/x. ) < (n+l)A. 
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APPENDIX 4A:    Development of alternate expression for noncentral   F 
probability integral 

fU; A)  = e 
■x/2 Z{x/2f      . r(KH-r) 

r!       r(K-l)r(r+l) 
dt   t^"^ (l-t)"" 

r=0 

-X/2       r(K) dt t K-2 Z 
r=0 

\k^'-'^Y   (K)r 
• TTT7 r! 

5 

r^/^     (K-l)f    dt t"^-^     iFi    [K;U|(l-t)]      , (4A-1) 

where iFi(a; b; x)  is the confluent hypergeometric function.    Using Kummer's 

transformation 

^Fi  (a;  b; x) = e^ ^F^  (b-a;  b; -x) (4A-2) 

we obtain 

fU, X) = (K -1)   /       dt t^"2 e"^^/^    iFi   [l-K; 1; - |   (1-t)] 

0 
K-1 

(K-l)^    ^    (-l)'-%f^j .4. 4.K-2    ,,   .^r      -Xt/2 dt t (l-t)      e 

r=0 

K-1 

=  (K-1) 

r=0 • '^O 

K~2    (^^^^r    ^^Xt/2^ 

(4A-3) 

198 



J. S. LEE ASSOCIATES, INC. 

5.0   REFERENCES (PART I) 

[1]   J. H. Fennick, "Amplitude Distributions of the Telephone Channel 
Noise and a Model for Impulse Noise," Bell System Technical 
Journal, 48, pp. 3243-3264 (December 1969). 

[2]   H. M. Hall, "A New Model for 'Impulsive' Phenomena: Application 
to Atmospheric-Noise Communications Channels," Stanford 
University Electronics Labs. Tech Report Nos. 3212-8 and 
7050-7, SU-SEL-66-052 (1966). 

[3]   D. Middleton, "Statistical-Physical Models of Man-made Radio 
Noise, Part I," Dept. of Commerce Office of Telecommunications 
Report OT 74-36 (April 1974). 

[4]   D. Middleton, "Statistical-Physical Models of Man-made and Natural 
Radio Noise, Part II: First Order Probability Models of the 
Envelope and Phase," Dept. of Commerce Office of 
Telecommunications Report OT 76-86 (April 1976). 

[5]   A. D. Spaulding and D. Middleton, "Optimum Reception in an 
Impulsive Interference Environment," Dept. of Commerce 
Office of Telecommunications Report OT 75-67 (June 1975. Also 
see IEEE Transactions on Communications, COM-25, pp. 910-923 
(September 1977). 

[6]   L. M. Nirenberg, "Low SNR Digital Communication over Certain 
Additive Non-Gaussian Channels," IEEE Trans, on Communications, 
COM-23, pp. 332-341 (March 1975). 

[7] C. J. Wolejsza, "Non-Gaussian Characteristics of the FDM-FM 
Satellite Baseband Voice Channel," PhD Dissertation, The 
Catholic University of America, Washington, D.C. (December 1979). 

[8]   D. Middleton, "Procedures for Determining the Parameters of the 
First-order Canonical Models of Class A and Class B Electromagnetic 
Interference," IEEE Trans, on Electromagnetic Compatibility, 
EMC-21, pp. 190-208 (August 1979). 

[9] S. C. Schwartz and J. B. Thomas, "Detection in a Non-Gaussian 
Environment," Information Sciences and Systems Laboratory, 
Reprot Number 5, Princeton University, September 1982. 

[10]   A. B. Martinez and J. B. Thomas, "Non-Gaussian and Multivariate 
Noise Models for Signal Detection," Information Sciences and 
Systems Laboratory, Report Number 6, Princeton University, 
September 1982. 

199 



J. S. LEE ASSOCIATES, INC. 

[11]   J. H. Miller and J. B. Thomas, "Robust Detectors for Signals in 
Non-Gaussian Noise," IEEE Trans, on Communications, COM-25, 
pp. 686-690 (July 197Tr 

[12]   M. Matsumoto and G. R. Cooper, performance of a Nonlinear FH-DPSK 
Spread-spectrum Receiver with Multiple Narrow-band Interfering 
Signals," IEEE Trans, on Communications, COM-30, pp. 937-942 
(May 1982). 

[13]   J. S. Lee et al, "Signal Design and Detection Strategies for LPI 
Communications in Electronic Warfare Environments," Lee 
Associates Reprot JTR-83-01, May 1983. (AD-B073 026L) 

[14]   N. H. Lu and B. A. Eisenstein, "Detection of Weak Signals in 
Non-Gaussian Noise," IEEE Trans, on Information Theory, IT-27 
pp. 755, 771 (November 1981). 

[15]   L. M. Nirenberg, "Parameter Estimation for an Adaptive 
Instrumental of Hall's Optimum Receiver for Digital Signals 
in Impulse Noise," IEEE Trans, on Communications, COM-22, 
pp. 798-802 (June 197D. 

[16]   K. S. Vastola, "Threshold Detection in Narrowband non-Gaussian Noise," 
Information Sciences and Systems Laboratory, Report Number 9, 
Princeton University, March 1983. 

[17]   L. E. Miller and J. S. Lee, "Capabilities of Multiplicative Array 
Processors as Signal Detector and Bearing Estimator," (AD-A004587). 

[18]   T. W. Anderson, An Introduction to Multivariate Statistical Analysis. 
New York: Wiley, 1958, Chapter 12. 

[19]   H. L. Van Trees, Detection; Estimation, and Modulation Theory, 
Part I. New York: Wiley, 1968. 

[20]   G. V. Trunk, "Small and Large Sample Behavior of Two Detectors 
Against Envelope-detected Sea Clutter," IEEE Trans, on 
Information Theory. (Correspondence), January 1970, pp. 95-99. 

[21]   J. W. Modestino and A. Y. Ningo, "Detection of Weak Signals in 
Narrowband Non-Gaussian Noise," IEEE Trans, on Information 
Theory, Vol IT-25, pp. 592-600 (September 1979). 

[22]   J. K, Omura and P. D. Shaft, "Modem Perfonnance in VLF Atmospheric 
Noise," IEEE Trans, on Comm. Tech., Vol COM-19, pp. 659-668 
(October 1971). ™ 

[23]   Milton Abramowitz and Irene A. Stegun (eds.). Handbook of Mathematical 
Functions, National Bureau of Standards Applied Mathematics 
Series 55. Washington, D.C.: Government Printing Office, June 
1964, Ninth printing, November 1970. 

200 



J. S. LEE ASSOCIATES, INC. 

[24]   D. A. Shnidman, "Efficient Evaluation of Probabilities of Detection 
and the Generalized Q-function," IEEE Trans, on Information Theory, 
Vol IT-22, pp. 746-750 (November 1975). ^ 

[25]   L. E. Miller, "Multi-sensor Detection Study," Contract N60921-80-C-0107, 
J. S. Lee Associates, Inc. September 1980 (AD# A091954). 

[26]   S. V. Czarnecki and J. B. Thomas, " Nearly optimal Detection of 
Signals in non-Gaussian Noise," Information Sciences anJ Systems 
Laboratory, Report number 14, Princeton University, February 1984. 

[27]   R- V. Hogg and A. T. Craig, Introduction to Mathematical Statistics 
(second ed.), MacMillan, New York 1965. 

[28]   L.E. Miller and J.S. Lee, "Bandpass Correlator Analysis for General 
Input Assumptions," IEEE Trans, on Information Theory, Vol IT-28, 
pp. 973-977 (November 1982). 

[29]   J.S. Lee et al, "Analyses of Weak Signal Extraction and Spread Spectrum 
Detection in the Electronic Warfare Environment," Contract 
N00014-80-C-Q753, J.S. Lee Associates, Inc., November 1981. 

201 



J. S. LEE ASSOCIATES, INC. 

PART II: 

AN INVESTIGATION OF CANONICAL CORRELATION 

AS AN AUTOMATIC DETECTION AND BEAMFORMING TECHNIQUE 

1.0 INTRODUCTION 

1.1 BACKGROUND 

Detection of signals in noise can be enhanced by the use of arrays 

of sensors. If the N sensor outputs are delayed (phased) such that the signals 

at each output are in phase, the signal power in the sum will be proportional 

to N2, For independent noise at each sensor, the noise power in the sum will 

be proportional to N. Thus an output SNR (signal-to-noise ratio) gain pro- 

portional to N. At the same time, information on the direction of the signal's 

arrival is embedded in the time delays (phase shifts). Figure 1-1 illustrates 

the array sum concept; it is understood that the operations performed are 

valid at a given center frequency and bandwidth of interest. 

For pairs of sensors as opposed to arrays, the concept of correla- 

tion is well understood when the noise is Gaussian. Figure l-2(a) shows how 

the joint operations of detection and time delay estimation can be performed 

using a correlator. Although the same operations can be performed by squaring 

the sum of the two sensor outputs, the sensitivity of the output to the delay 

is not as great. If the background noise contains an impulsive component, 

the usual assumptions (isotropic, uncorrelated noise) are, however, no longer 

valid. 

For more than two sensors, attention has been given to the relative 

merits in Gaussian noise of "standard" processing (summing all sensors and 

squaring) and of "multiplicative" processing, in which partial array sums 
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are formed, then multiplied [1]. In general, the multiplicative (correlator) 

configurations, such as shown in Figure l-2(b), provide the same directivity 

for fewer sensors but are slightly less sensitive in detection. In either 

case, the task of "steering", or assigning delays or complex weights to the 

individual sensors must be made. When multiple sources are present, the 

success of both the standard and multiplicative approaches usually depends 

on the notion of sweeping the "look" angle, and resolution is proportioned to 

the number of sensors. 

Under the usual assumptions of Gaussian, isotropic ambient noise, 

it is well known how to combine two sensors for detection of a signal of known 

or assumed form; however, in the presence of impulsive noise components, the 

performance of this sensor application is less well understood. How to operate 

two arrays jointly is an open subject with or without Gaussian noise assumptions, 

1.2     MOTIVATION FOR STUDY 

When two arrays are separately located, the question of combining 

their sensor outputs to achieve the effects of a "super array" arises. 

Resolution is expected to improve because of the large baseline. However, 

the two arrays must be time-aligned or steered in the correct initial directions 

before any fine tuning can be done, and it needs to be ascertained whether 

they are observing the same or different sources. Therefore correlation (or 

coherence, in the frequency domain) serves the purpose of confirming that the 

arrays are looking at the same source, as well as actually performing the 

detection and localization functions. 

A new method for cross-correlating arrays is believed to be 

promising .  The approach is to exploit the principles of "canonical 

correlation" [2], which may be explained as follows: 
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Denoting the N = N + N sensor outputs for the two arrays as x_ and /, 

the covariance matrix of the total sensor vector is 

Cov 

'xy 

^xy  y 
I (1-1) 

where ( ) stands for conjugate transpose and s is an N x N = (N + N ) matrix. 
X   y 

Two steering vectors a (N x 1) and ^  (N x 1) can be defined; the array sums 
X y 

become 

-I nt .X .   ~ 
1    1 

* 
a X (1-2) 

i=l 

N 
y 

i=l 

(1-3) 

Canonical correlation procedures find vectors a and §_ so that the correlation 

E{WZ}  =    a       E(2<X )j.    = a  \yL (1-4) 

is maximized. In fact, as many as N or N (whichever is smaller) correlations 

of w,z combinations can be determined and ranked. 

Since the canonical correlation procedure is based on the covariance 

matrix (in practice, its estimate), its outputs (the steering vectors and the 

correlations) seem to constitute an adaptive solution to simultaneously steering 
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in multiple directions. Thresholding of the correlations would then correspond 

to detection of multiple targets. A multiple target capability would of course 

be of considerable utility in ocean surveillance applications, especially in 

view of the consideration that the correlations can be performed on data in 

a common spectral band, rather than at different frequencies. 

Another advantage of the canonical correlation method would seem 

to be that the solutions for the steering vectors from information embedded 

in the sensor covariance matrix does not require knowledge of sensor positions. 

Thus the method is a form of automatic beamforming. 

1.3      REVIEW OF CANONICAL CORRELATION METHOD FOR REAL DATA 

As set forth by Anderson [2], the canonical correlation 

method is the solution to the following problem: Given the m-component zero- 

mean random vector x with m x m covariance matrix E, suppose that x is 

partitioned into two vectors, 

(1-5) 

where x}  '  contains mj components and x^^  contains m2 components (mi+m2= tn). 

The covariance matrix, assumed positive definite, can be partitioned correspondingly 

as 

I 
^11   ^] 

(1-6) 

207 



J. S. LEE ASSOCIATES, INC. 

where Zn  is mi x m2, X12 is mi x m^,  ^21 TS m2 X mi, and I22 ""s m2 x m2. 

Now consider the arbitrary linear combinations U and V, where 

U^Jx(l),  V^/x(2) (1-7) 

and we require that U and V have unit variance, that is, 

E {U^} = E {aV^y^^''°ot} = Jsiia = 1 (l-8a) 

and 

E {V2} = E {lV^y^^''"l} = /E22 1=1- (l-8b) 

In (1-7) and following equations we use the notation ( ) to indicate the 

transpose of a vector or matrix. 

The correlation between U and V, which have zero means, is 

E {UV} = E {aV^^x'^^''°l> = J212 1 •  ■ (1-9) 

The problem is to find a. and §_ such that the correlation (1-9) is maximized 

subject to the constraints (1-8). In the usual manner, the solution is obtained 

by first defining the function 

* = a 2121 - hxisu  111 a - 1) - huiO^Zzz^ " !)♦      (1-10) 

where A and \i   are Lagrange multipliers. Next, i>   is differentiated with 

respect to the elements of a and £, and the derivatives are set to zero: 
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II     =   Zi2i- AZn-   = 0       ■ (1-lla) 

II-       =     Zi2a   -U222i       =0. ' (1-llb) 
op 

Multiplication of (1-lla) on the left by a    and (1-llb) on the left by g_ 

yields the equations 

<^ll2^-  >^a''2iia     =  0 (l-12a) 

e.M2a - \i^^i2^   =0 (l-12b) 

Using the constraints (1-8) in (1-12), we see that 

T 
X = U = a Ei2e. , . (1-13) 

and (1-11) can be combined to form the matrix equation 

■XZii    li2 

'21 

(1-14) 

Nontrivial solutions of this equation require that the matrix be singular: 

(1-15) 

or equivalently, using v = X^ , 
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det u:i2^22^2i - ^^iil" ^  » V = X^ (1-16) 

It can be shown that if m^ < 012 , there are m^ roots to the 

polynomial in v generated by (1-16), The vectors a and _g corresponding 

to these roots generate m^ uncorrelated linear combinations. 

If the roots x = /v     are ranked, then x^- (i = 1, 2, ..,, m ) is the 

ill (2) i:th canonical correlation between >r  ^ and _x' . The vectors a^. and ^^ 

defining the linear combinations U. = aJ.}C  '  and V. = S_^x^ '  satisfy (1-15) 

for X = x^. 

The conditions on the x 's, a 's, and ^  's can be summarized as 

A' ZiiA = I (1-I7a) 

Bi Z22^1 ~ 1 (l-17b) 

A ^12^1= A  , (1.17c) 

where 

ai  • ao  a     , (m,  x  m,) 
-.1 —i      —mi     -^     '■ 

• •   •   j 

• * *       J ^ 

(l-18a) 

(l-18b) 

A  -  diag (Xi , ^2, "•• ^ )• (l-18c) 
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In addition if m^ < m2, we have the conditions 

B""" E22B = 0 •   (l-19a) 

BI222B. = I (l-19b) 2 z^ 2 

where B, is an auxiliary matrix of "extra" ^%  given by 

= f B  ,     8„ 1, m2 >< (m - m ) B2 =  I B  .     8^ !, m2 >< (m, - m J.       (1-20) 
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2.0 EXTENSION OF CANONICAL CORRELATION TO COMPLEX DATA 

'"      We consider now extending the canonical correlation concept and 

procedure to complex data, in order to treat bandpass signals. 

2.1 FORMULATION OF THE PROBLEM 

Figure 2-1 illustrates a situation in which M=2m sensors, 

arbitrarily located within some area, receive one or more signals arriving 

from different directions. We assume that the signal wavefronts are 

adequately represented as planar, and for simplicity consider only a two- 

dimensional case in which the sensors lie in a plane. Each sensor also 

samples the ambient noise background and/or generates within itself a noise 

background. 

The direction of each signal's arrival is embedded in relative 

delays of the arrival at the sensor. That is, for sensor i and signal k, 

the received waveform is 

x.(t) = Sj^(t-T/''h + n.(t) (2-1) 

and the direction of arrival information is present in the set of relative 

delays {T^.Vj ,}, where 
1,2 

(k) A fk)  _ 
1 (2-2) 
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FIGURE 2-1    ILLUSTRATED SENSOR PLACEMENT AND RECEIVED SIGNAL ARRIVALS 
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2.1.1   Complex representation of the data. (2-3) 

Bandpass filtering of the sensor outputs is assumed,  so that they 

have the form 

x^(t) = R.(t) costu^t + <j)^(t)I 

= X .(t) cosw t - X .(t) sincj t 
Cl o Si 0 

= Re {(x^. + jx^.} e^^* 

(2-3a) 

(2-3b) 

(2-3c) 

In this formulation R is an envelope and <}) is a phase with respect to a center 

frequency f = w /2IT. The quadrature components x . = R.coscj). and x . = R-   sin:()- 

are an alternate representation; samples of these components, each at the rate 

B Hz, where B is the bandpass bandwidth, are sufficient data to reconstruct 

x^- (t) on a given time interval. The third form, (2-3c), indicates how 

x-j (t) is related to its complex envelope x .(t) + jx .(t). 

In place of x.(t), we may consider samples of the complex 

envelope as constituting the data. Together, the M sensors produce the data 

vector 

x(t) X^^(t) + jx^^(t) 

X  (t) + jx  (t) 
cm    ^ sm^ ' 

= x^(t) + jx^(t) (2-4) 

We assume that the means of x^(t) and x. (t) are zero, 
—c     ^ 
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The covariance matrix for the sampled complex data vector is, 

after Goodman [4] 

J5E{xx*> = hUix^ + JX3)  (xj - j/)} 

,  r-r T T . T . T,     A    - 
= %E{x X ' + XX    + jx X    - JX-X_}  = ^ 

—c—c      —s—s        —s—c        —c—s 

with elements 

^ik = ^^E{x^.x^^ + x^.x^^ + jx^.x^^ - jX^.X^^j 

From {2-5b) we see that a.. =0,.  the complex conjugate of a      . Thus 

* 
E = E, that is, E is Hermitian. 

2.1.2   Correlation measure 

Let the number of sensors be an even number M = 2m, and let the 

data vector be partitioned into two m x 1 vectors. 

X = 

the covariance matrix then can be partitioned as 

E = 
^11  ^12 

E21 E22 

(2-5a) 

(2-5b) 

(2-5) 

(2-7a) 

where, since is Hermitian, each submatrix is m x m, and 

^11* -  ^ii» ^22* = ^22. and E21 = ^12' (2-7b) 
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fl) '2) 
A complex correlation between the linear combinations U = a * x_ and V = ^* 21 

may be defined as 

(1) (2)  , 
E{UV} = E{a* X X !> 

= a*Z3.2l. (2-8) 

In general, this quantity is complex. The variances of U and V, of course, 

are real when defined in the inner product sense of E{UU} =E{|U! } and 
2 

E{|V| }, respectively. 

2.1.3   Maximum correlation 

Since the correlation (2-8) can be complex, the concept of a 

maximum is still ambiguous. However, as we shall demonstrate below, the 

solution to the maximization problem provides that the correlation, when 

maximized, is real. 

The function to be maximized, with constraints, is 

First, consider differentiation with respect to the elements of a = a + ja , 
R I 

where a    and a    are the real  and imaginary parts of the vector a. 
R I 

This operation yields the equations 

|i    =jSi2S  - %X[-jZiia + J^ll3  = 0- (2-lOb) 
oQL 
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Premultiplying (2-lOa) by aT and premuHiplying (2-lOb) by a  ,  and then 
R I 

adding the two resulting equations yields the single equation 

*        *      T  T — 
(2-11) 

But since the quantity 

a  Eiia  =  a   Eiia  =  a  Zii   a     =   1 a_ z.]^ 15L ~ 5i ''11 (2-12) 

is real,  (2-11) reduces to 

\  = a  Z '± i-lZl (2-13) 

This demonstrates that the correlation is a real quantity if the Lagrange 

multiplier \  is taken to be real. 

By a similar process, differentiation with respect to e_ = e_ +j3_ 
R   I 

yields the result 

T  T-  * 
(2-14) 

Therefore the maximization problem reduces to the matrix equation 

•^^11  ^12 

E21  -AZ22 
= 0 (2-15) 

Nontrivial solutions to this equation require, as in the real 

data case. 

det 
■XEll     E12 

Z21     -AE22 

=  0   , (2-16a) 
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2 
or equivalently, with v = A  , 

-1 
det  [Ei2^22 ^21 - v^ii] = 0  • (2-16b) 

2.1.4 Sample solution :  single signal. 

Before considering more complicated cases, we demonstrate the 

canonical  correlation method's solution for the simple case of uncorrelated 

sensor noises and a single,  sinusoidal   signal.    For this case, the waveforms 

at the sensors are 

)c.^.(t) = s(t ~ T.) + n.(t) 

= Re{Ae>6(t "^i^  + ^^s  + (n^^-   + :n^.)B^''^^ } 

= Re{^e"J*i  +n^.   + jn^. )e^'^''h (2-17) 

This formulation neglects any attenuation of the signal   from sensor location 

to sensor location.    The covariance matrix for complex samples of these 

waveforms is , - 

* 
z = HE{xx_ } 

= %i:{(Av + ri    + jn.)    (Av* + nj - jnj)} 

= %[;s?vv    + 2a I] 

= a   [I  + pvv*]   . (2-18) 
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In this development we have used the notation 

■Hi 

e-J^ (2-19) 

and assume the noise components have equal variances, 

E{n^.^}= Etn^.^} = a', 

with P = A^/2a^ denoting the signal-to-noise ratio (SNR). 

For M = 2m sensors, we partition _v into two m x 1 vectors y 

and V so that the partitioned covariance matrix has the form 
I 

(2-20) 

Z = a 

I + pv V * 

pV V 

pv V 

I + pv V 
-2-2 (2-21) 

matrix 

The determinant to be solved for the maximum correlation is of the 

-1 
^12^22  ^21 ~ ^^11 

=[ pv V *(I + pv V *) Pu V  -V(I+PV V )]^ 
1~Z —2—2    -^—1   ^   —1—1 ' 

(2-22) 
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The needed matrix inverse is 

1      pv V * 
(I + pv V *)  = I - ~?~?   — 

-2-2 2 
1 + PIV 1 

~2 

(2-23; 

Substituting (2-23) in (2-22) yields the determinant 

det 
PII 

2 ' 2   *     2   -\ 
(_ v)pQ V V  - va I 

2        -1-1 
1 +P V 

0 , (2-24a) 

or, using the fact that |v_ [ = m. 

det 
■/  mP      2   *    2 , 

] = (2-24b) 

It can be shown by induction that 

det (al + bvv ) = a   (a + mb). (2-25) 

Applying this fact to (2-24b) results in the following equation to be 

solved for v: " 

2 .m.ir 2      2 
(a v)' 

mp 
a v+ mpa (v - ___ . } 

1 + mP -J 
= 0. (2-26) 
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The solution is immediately seen to be that there are m-1 zero correlations 

(v=0), and one maximum correlation (normal ized) given by 

X =^v = -2P— . (2-27: 
1 + mp 

Substitution of this value of v in the equation 

" ^12^22^21°' =vZ3^ia (2-28a, 

yields the information that 

'Y-i 2.' = (==^) V = kv (2-28b) 

where k is a constant scale factor. The appropriate scale factor is found 

from the requirement 

2 *    2     2   * 
a_ Zixo. = 1 = k y.1 (la + pa v_ v_ )_Vi 

k^^m (1 + mp) (2-29a) 

or finally. 

h 
V ma^ (1 + mp)       . (2-29b) 
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In a similar manner, e is found to be 
V 
—2 

^ ^ ^fii!^^~lT~^~m^ . (2-30) 

For this simple case, the solution is easily interpreted. Maximum 

correlation between a linear combination (complex weighted sum) of signals 

from half of the sensors and a linear combination of signals from the other 

half is achieved when the weights are chosen to remove the relative propa- 

gation delays (i.e., steer a beam in the direction of signal arrival). For 

example, a reconstruction of time samples of the linear combination U would 

produce the waveform 

u(t)= Re{U(t)eJ''«^^ 

= Re{a* xlt)e^''^o*^ 

Re{Z ke^'^- [Ae-^'i + n^.(t) + jn (t)]eJ""o^^ 
i=l ^'      ^ 

kmAcosoint + ^    n.(t)     . (2-31) 
i=l   ^ 

In the more general  case, this ideal   solution will   be affected 

variously by complicating factors,  including 

(a) the presence of more than one signal 

(b) non-zero noise correlations between sensors 
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(c) attenuation of the signal as it propagates through the 

array of sensors 

(d) non-tonal (modulated) signals. 
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2.2 SOLUTION  FOR TWO SIGNALS 

We consider now how the presence of more than one signal  affects 

the canonical  correlation solution.    The model   for the data  in this situation 

Is 

^ je 
x=VAe"v      +n^+jn    , (2-34) 

^—'     n -n      -c       ^-s 
n=l 

in which (A ,6 ) are the sampled amplitude and phase of the nth of N signals. 

The covariance matrix for this data model is 

J2  = ^E(x X*) 
N 

Z^ n-n-n ro ^c^ 
n=l (2-35 

This formulation assumes that 

.1 

EIA^e" "vn   A^e"-^"®W} = 0, ' (2-36) 

that is, the signals are uncorrelated. 

2.2J    General formulation 

Analytically we can pursue a solution conveniently for two signals. 

For ease of notation, let pi = p, po = r, V,HV, and v = w. 

Then the covariance matrix is 

J^=  a2{I + pv V* + rww*}. (2-37) 
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Suitably partitioned, this matrix has the component matrices ( all m x m) 

^11 = o^{l  + pv V * + rw w *) (2-38a) 
-1-1-1-1 

Si2 = a^fpv V* + rw w*) (2-38b) 
^ -1 -2    -1-2 

j;,. = a2(pv V* + rw w*) = 
^^   - ~2 -1   -2 -1 (2-38c) 

Zoo = <^^(r + pv V* + rw w*). (2-38d) 
Z^ -2-2-2-2 

The matrix whose determinant is to be found is 

-1 
^12^22^21 - "^^11 

= a^(pv V* + rw w*) (I + PV V* + rW W*)~ (pv v* + rw w*) 
—1 —2 —I  —2        ~2 -2     ~2  ~Z -2-1    "2-1 

• w2(l + pv V* + rw w*).    - (2-39) 
-l"!    -1-1 

The inverse matrix has the form[3] 

(I + pv^ v^* + rw w*)" 
i i   1 i 

pr[z.v.w.* + z.w.v.*] - p(1+mr)v.v.* - ■^(l+mp)w w* ^ 1—1—1    1-1-1 ■■  ^   '-1-1    ^   —1-i 

1 + m(p+r) - prA. (2-40a) 

using z^. ^ v*w.. Ai= |z.I2-m2. ^2.40b) 
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After substituting (2-40), the matrix in (2-39) becomes 

(neglecting the factor a^) 

[A(Z2) - vp]v V * + [B(Z2) - vr] w w* 

_   * 
+ C(Z2) [ZTV W* + Z2W V ] -VI, (2-4L) 

1~1   ~1~1 

where Z2 is the complex number 

z, ^ v*w ' (2-42a) 
22 

and the coefficients A, B, and C are 

2 
P (m-rA2) 

A(Z2) = 
1 + m(r+p) - prA2 ' "   (2-42b) 

2 
r(m-pA2) 

B(Z2) = 
1 + m(r+p) -prA2 (2-42c) 

pr 

^(^2) = 1 + rT,(r+p)-prA2. (2-42d) 

As a check on our algebraic manipulations, we note that if r=0, (2-39) reduces 

to the single signal matrix, (2-24). 

2.2.2    Formulation for linear array. 

When the sensors are aligned to form a linear array with equal spacing 

d, the delay vector for the n:th signal assumes the special form 

where 

^cos b . b = bearing, (2-43b) 
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using the geometry of Figure 2-2. When partitioned, we find that 

(2)   -J'"9n (1)        .    - 
.     ■ ^ =^    ^ (2-44) 

* jm(e. - e ) 
and v^dlvli) °r.D^(V~e„) exp(  ^^  " 1, (j.^,, 

In terms of the quantities introduced in Section 2.2.1, the linear 

array geometry produces the relations 

(2-45a) 

^1 " ^2 ' (2.46b) 

&i = A2 (2-46c) 

The overall covariance matrix has the form, for m = 2, 

^ = II 5.^ + pexp{j(k-i)9^} + r exp{j(k-i)e2} II . (2-46d) 

These simplify the solution somewhat, but further simplification does not seem 

possible. 

2.2.3    Special case of four sensors. 

In order to pursue numerical cases, we consider a small array size 

of M = 2m = 4, In this case, we can write 
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-(m+1/2)d -3d 
2 

-d 
2 

d. 
2 

b = bearing 

3d      ...(m+1/2)d 
2 

FIGURE 2-2   LINEAR ARRAY CONFIGURATION 
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E ^ (1 + p + r) 
11 

z = (1 + P + r) 
22 

1      'i 

1     C, 

'2   1 

(2-47a) 

(2-47b) 

and 

z    Ml + P + r) 
12 

C3    C^ 

"^5   ^5 (2-47c) 

The canonical correlations are then the solutions to the equation 

0 = X^  (l-|c^|2)(l-Ic2l^) 

2 _ _ _ _ 
+X {2Re[CoCi.Cc + CTC-CJ. + c,c.Cc + c^c-c. '■256 135        146        234 

- c-^C2C2Cg - C-^C2C^C5] 

I     |2       I     |2       I     ,2 
ICgl   } 

Or    -    |2|_    |2 2,      2 
+X'{ C3ncgr +  Ic4ric5l   - 2Re[C3C^C5Cg]} (2-48) 

This equation is quadratic in X =v.    Having calculated X, the a steering 

vector is found to have components which satisfy 

^2'   '^3'  "^ 1^41-2^6^:2^304] -A^(l -Ic^ I) 

"1   c^X^d - IC2I2 - C3F5 + C2C3Cg - c^Fg + ^204^5  (2.49a) 

and 
,22      _ 

a   + la I  + 2Re[C,a a ] = 1 
1       2 I 1 2 

(2-49b) 
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These constraints determine a to within a complex factor with unit magnitude, 

so conveniently we may take a to be real. 

Having found a, £ is determined by 

.1 

X §.   =    1- ^22  ^21    a. .   ^> 0 . (2-50a) 

or 

and 

6l  =  [(c3-C2C^)ai  + (Cg  - C2C5)a2]/X(l-|c2l   ) (2-50b) 

32 =  [(c^-C2C3)ai  + (Cg-C2C5)a2]/xa_!G2l   ). (2-50c) 

For the special  case of linear arrays with four elements, we have 

c,  = c„ = c- and c- = c-, resulting in the simplified equations 

4 2? 
0 = X (i-lc-,!) 

2 _ _ 3  _ 
+ X {2Re[2c^(c^C2 + c^c^)  - c^  c^] 

-2IC3I'- 2|c^Mc3|' -   |c^l'-|c4l'^       ■ 

X  {IC3I + Ic^l jc^l - 2Re[c^C32c^]} 

IC3I + |c^| - 2Re[c.,C3C^]-X 0-\c^\   ) 

(2-51) 

«^ = 
''I  c^x2(i_[c^|2) _ c^C3 + c^|c3|2 - FgC^-0^030^ 

_____ 2 
gl = [(C3-C^C^)ai + (c^ -c^C3)a2]/x(l-lc^ I ) (2-53a) 

      ^ 
&2  = [(C, -C^C3)ai + (C3-C^2)cj] /X(l.|c^| ) (2-53b) 
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3.0 NUMERICAL STUDIES 

Since an easily interpreted analytical solution for the 

canonical correlations and their corresponding steering vectors has not 

been found, we resort to selected numerical studies to explore the 

dependence of these quantities upon various parameters. In all the 

numerical cases presented, four sensors are assumed (M=2), and the 

array configurations illustrated in Figure 3-1 were used. As indicated 

in that figure, the direction of arrival of the planewave signals is 

given in terms of the bearing n relative to the x-axis. 

The parameters used in the numerical studies are listed in 

Table 3-1. 

3.1 RESULTS FOR SINGLE SIGNAL 

Although in Section 2.1 it was shown that the canonical 

correlation method yields an accurate steering vector for a single signal, 

irrespective of array configuration or spacing, a number of single signal 

cases were calculated in order to verify the analysis and also investigate 

effects of noise correlation. 

According to the analysis presented earlier, the maximum 

canonical correlation value for a single signal should be 

^ ~ 1+mp    1+2P   .     ' (3-1) 
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*-x 
(-d.O)   ^ 

(a) Array configuration 1: antiparaliel pairs 

*► X 

(b) Array configuration 2: crossed pairs 

-3d/2   -d/2 

—•—i-»-x 

(c) Array configuration 3: partitional linear array 

FIGURE 3-1    ARRAY CONFIGURATIONS USED IN NUMERICAL STUDIES 
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Case Array d/^ P r !!-,/•"■ Tl2 correlation 

1 1 0.25 10 0 o(.i)i - none 
2 0.25 1 0.75'7r 

3 0.25 5 0.75'7r 

4 2 0.25 10 0 0(.1)1 - none 
5 0.25 1 0.75-77 

6 0.225 1 0.75'n- 

7 0.175 1 0.75'7r 

8 0.075 1 0.757r 

9 0.075 5 0.75'jr 

10 3 0.075 10 1 o(.i)i O.SO-TT none 
11 0.075 10 1 0(.05)1 111 -7r/2 none 
12 0.25 10 1 0(.05)1 Tll-TT/a none 
13 0.125 10 1 0(.05)1 T1i-7r/2 none 
14 0.075 10 5 0(.05)1 r\^-'rrf2 none 
15 0.075 10 5 0(.05)1 Ti.,-'n-/4 none 
16 0.075 10 1 0(.05)1 y\^-^^/4 none 

17 0.25 10 1 o(.i)i 0.7577 none 
18 0.075 10 1 0(.1)1 • 0.7577 none 
19 0.075 10 1 0(.1)1 0.7577 0.01 

20 0.075 10 1 o(.i)i 0.75^ 0.10 

21 0.075 10 0 o(.i)i - 0.10 

22 0.075 10 0 0(.1)1 - 0.20 

23 0.075 1 0 0(.1)1 - 0.20 

24 0.075 1 .1 0(.1)1 0.7577 0.20 

25 0.075 .1 .05 o(.i)i 0.7577 0.20 

26 0.075 10 0 0(.1)1 - none 
27 0.075 1 0 o(.i)i - 0.10 

28 0.075 1 0.1 o(.i)i 0.7577 0.10 

29 0.075 10 1 0(.1)1 0.7577 0.20 

Arrays: 1 : antiparallel pairs 

2 : crossed pairs 

3 : partitioned linear 

SNR 1 SNRo 

TABLE 3-1  PARAMETERS USED IN NUMERICAL STUDIES 
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In order to asses the agreement of the steering vector 

solution with the actual direction of arrival, we define the agreement 

metric 

Agreement = 1 + cos (92-<J)2+<t>i) 

+ cos (0 3-<j)3+(J)i) 

+ cos (e^-*[,+4.i) ,  , (3-2) 

where the steering solution vector is 

(ai,a2,3i,32) = ([a^ [e^'^Ma^ je^^M Si leJ"*3, ] g^ ] e^'*'^) ,        (3-3) 

and the actual received delay vector is 

(e-^'^i.e^^^e^'^s.e^'®^). ' (3-4) 

This metric ignores any constant phase difference between the actual 

vector and the solution vector, as well as any differences in the magnitudes 

of the components. 

3.1.1   Cases without noise correlation. 

The elements of the normalized covariance matrix (2-47) were 

generated using 

Ci = pexp{j('9i~e2)}/(l+p) 

C2 = pexp{jC9 3-6^)}/(i+p) 

C3 = Pexp{j(ei-e3)}/(i+p) 

cn = pexp{j(9i-ei,)}/(l+p) 

Cs = pexp{j(e2-93)}/(l+p) 

ce = pexp{j(92-9^)}/(l+p) (3-5) 
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and     ^A = ^  (x. cosn + y. sinn), i = 1,2,3,4. (3-6) 
1     A     1 I 

In the one-signal cases with no noise correlation (Nos. 1,4,26), 

without exception the canonical correlation solution yielded one non-zero 

root ( \  = 20/21 = .95238 for p= 10), and the agreement metric was always 

equal to 4, indicating a correct numerical solution for the delay vector. 

3.1.2   Cases with noise correlation. 

Several cases of noise correlation between sensors were examined 

for the linear array configuration. For that array type, the correlation 

is easily modelled by assuming that the covariance matrix is, in the 

absence of signals, 

where a is the correlation coefficient (0<a<l) between nearest sensors. 

Table 3-2 gives the canonical correlation results as a function 

of signal bearing, for an SNR of p = 10 and 1, and a noise correlation 

coefficient of a = 0.1 and a = 0.2. It is seen from this data that the 

second canonical correlation now is nonzero, but that the noise correla- 

tion has increased the first canonical correlation values from their 

zero-noise correlation values (.95238 for P = 10 and .66667 for P = 1). 

The vector agreement metric indicates that the vector solution is slightly 

degraded from a perfect value of 4.0000, in proportion to the noise 

correlation, except when the signal is broadside to the array (n = Tr/2). 
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p n/vr 
a = 0.1 a = 0.2 

h X2 agreement ^1 ^2 agreement 

10 0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

.95216 

.95213 

.95207 

.95200 

.95193 

.95191 

.95193 

.95200 

.95207 

.95213 

.95216 

.00722 

.00720 

.00716 

.00710 

.00705 

.00703 

.00705 

.00710 

.00716 

.00720 

.00722 

3.9750 

3.9772 

3.9830 

3.9908 

3.9974 

4.0000 

3.9974 

3.9908 

3.9830 

3.9772 

3.9750 

.95468 

.95462 

.95447 

.95427 

.95412 

.95406 

.95412 

.95427 

.95447 

.95462 

.95468 

.01184 

.01177 

.01158 

.01135 

.01116 

.01109 

.01116 

.01135 

.01158 

.01177 

.01184 

3.8382 

3.8516 

3.8886 

3.9384 

3.9823 

4.0000 

3.9823 

3.9384 

3.8886 

3.8516 

3.8382 

1 0.0 

0.1 

0.2 

. 0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

66716 

66713 

66704 

66694 

66686 

66682 

66686 

66694 

66704 

66713 

66716 

.03117 

.03109 

.03090 

.03065 

.03045 

.03037 

.03045 

.03065 

.03090 

.03109 

.03117 

3.9724 

3.9748 

3.9813 

3.9898 

3.9971 

4.0000 

3.9971 

3.9898 

3.9813 

3.9748 

3.9724 

.67851 

.67849 

.67846 

.67844 

.67843 

.67844 

.67843 

.67844 

.67846 

.67849 

.67851 

.05038 

.05007 

.04928 

.04829 

.04748 

.04717 

.04748 

.04829 

.04928 

.05007 

.05038 

3.8663 

3.8773 

3.9079 

3.9491 

3.9854 

4.0000 

3.9854 

3.9491 

3.9079 

3.8773 

3.8663 

TABLE 3-2 CANONICAL CORRELATION RESULTS FOR ONE SIGNAL WHEN INTER-SENSOR NOISE CORRELATION EXISTS 
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3.2     RESULTS FOR TWO SIGNALS 

For more than one signal, our analysis did not reveal the 

effects of the various parameters upon the canonical correlation solution; 

only the method for obtaining the solution. In this section, we consider 

from numerical results the effects of array configuration and size, 

relative strengths of two signals, relative bearing separations of two 

signals, and noise correlation. 

3.2.1    Effect of array configuration and size. 

Assuming the array sensor spacing parameter d in Figure 3-1 

is x/4, one-quarter wavelength of the frequency of interest, we 

compare the canonical correlation solutions for the three array config- 

urations in Figure 3-2 and 3-3, when the first signal has an SNR of P = 10 dB 

and the second signal (at bearing nz = 3'n-/4) has an SNR of r = 1 = 0 dB. 

Figure 3-2 shows that the presence of the second signal, 

though relatively weak, manifests itself in there being two nonzero 

canonical correlations, Xi, and X2 , except when the bearings of the 

two signals coincide. There is significant variation in these correlation 

values as a function of the strong signal's bearing, ni . 
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For the crossed pairs array, in Figure 3-2, the first canonical correlation 

appears to be oscillating about the value 

—   »  m(p+r)     n  nc 
M  -    , \  = 0-95 (3_8) 

l+m(p+r) 

while the second canonical correlation seems to vary about the value 

\2    "  0.05. Thus it does not appear that for this array spacing we 

can infer the strengths of the signals from the canonical correlation 

values. 

Figure 3-3 reveals that for the d = X/4 spacing parameter, 

none of the array configurations yields a very good vector solution-, 

except when the two signals appear as one signal, although the quality 

of the vector solution for the linear array is high for a wider range of 

signal bearings than for the other two arrays. 

When, the array size is decreased, the solution for the first 

signal improves greatly. Figures 3-4 and 3-5 demonstrate for the crossed 

pair array, that the solution for canonical correlations is of more 

consistent quality as bearing varies when the array spacing is small (0.3 

times a quarter wavelength). However, the values of X2 indicate 

that this parameter does not reflect the relative strength of the second 

signal since 

X2/X1 ^   r/p = 0.1. (3-9) 
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The size of the linear array is varied in Figures 3-6 and 

3-7, and the second signal is oriented so that 12 = ni - -^11 • 

As for the crossed pair array, the most consistent results occur for the 

smallest array spacing tested (d = 0.3V4). The least agreement of the 

vector solution with the first signal's delay vector occurs when ni = 37T/4 

and n2 = TT/4; at these values the two signals are located symmetrically 

with respect to array broadside (n = Ty'2), and their respective delay 

vectors are 

v:= V (81), w = V. (-61) = V , (3-10) 

that is, the delay vector of the second signal is the complex conjugate 

of that of the first signal. This relationship causes the covariance 

matrix for the array to have the elements 

6^-,^ + p exp{(k-i)ei} + r exp{-(k-i )9i> 

= 6., Wp^+r^+2rPcos[2(k-i)ei]exp{j tan"^  (p-r)sinTi:k-i)9i]. ^ 
""^ (p+r)cos [(k-i)ei] 

== «^.|, + (p+r)exp{j(^)('k-i)ei}, e^ « 1. (3-11) 

Thus when ^i = Zird cos m/?^ is small, the solution will approach that for 

a single signal at the bearing of the strong signal; otherwise, the bearing 

solution will be distorted from the correct value. 

243 



1.4 

m 
oc 
QC 
O o 
< o 
o 
2 
<" 
o 

1.2 

1.0 
Ui 

> 

2      0.8 

0.6 

0.4 

0.2 

0.0 

1  
m =2 
p=10 
r =1 

linear array 
Tig =^1-7^/2 

1  X .25 

—■  .5 X .25 

" .3 X .25 

.2 .4 .6 .8 

FIRST SIGNAL BEARING,H^/"jr 

1.0 

FIGURE 3-6    EFFECT OF LINEAR ARRAY SIZE Cd/X) ON CANONICAL CORRELATIONS VS. 

lOdB  SIGNAL BEARING WHEN A SECOND. OdB SIGNAL IS PRESENT AT 

-'n-/2 BEARING RELATIVE TO FIRST SIGNAL 

244 



-I 
< 
> 

Z 
liJ 

UJ 
UJ 
GC 
O 
< 

o 
o 
UJ 
> 

-1 

-2 

m = 2 linear array 
p=10 Tg^^i'^^/S 
r =1 

^ 

J. 

.2 1.0 .4 .6 .8 

FIRST SIGNAL BEARING, n^/T 

FIGURE 3-7    EFFECT OF  LINEAR  ARRAY SIZE  (d/X)ON  AGREEMENT OF  STEERING  VECTOR 

SOLUTION WITH   10dB SIGNAL DELAY VECTOR WHEN A  SECOND, OdB  SIGNAL 

IS PRESENT AT - 7r/2 BEARING RELATIVE TO FIRST SIGNAL 

245 



J. S. LEE ASSOCIATES, INC. 

In Figures 3-8 and 3-9 the crossed pair and partitioned linear 

array solutions are compared for d = 0.3X/4 and the second signal at nz = 3'^/4. 

Little difference exists between the canonical correlation values, 

while the difference in vector agreement values tends to reflect the 

response patterns of the array when the signal bearing is near n = 0. 

3.2.2   Effect of relative signal strengths and angular spacings. 

The previous curves all were for a first signal strength of P = 10 

and a second signal strength of r = 1, or a 10 dB SNR ratio of p/r. Now 

we consider numerical cases for which the SNR is varied. These cases are 

presented in Figures 3-10 to 3-13 for the linear array. 

From Figures 3-10 and 3-11 we observe that the canonical 

correlation solution for the first signal is degraded in proportion to the 

strength of the second signal. In these figures the bearing of the second 

signal was assumed to be na = ni - Tr/2, so that at AI  = TT/4 the two 

signals appear as one signal to the array (62 = ©i) and at m = 37r/4, they 

appear in opposition, as noted in the previous subsection. 

A smaller angular separation between the signals was assumed in 

Figures 3-12 and 3-13, namely nz = nj - 77/4. For these cases, the two 

signals appear as one signal for m = TT/S and are opposed for ni = 5V8. 

Again, the interfering effect of the second signal is seen to be in 

proportion to its strength. 
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3.2.3   Effect of noise correlation. 

The results of canonical correlation solutions including 

noise correlation among sensors in the partitioned linear array are 

presented in Figure 3-14 and in Tables 3-3 and 3-4. 

We observe from Figure 3-14 that the agreement between the 

steering solution for the first, stronger signal and its delay vector is 

degraded in proportion to the noise correlation, as in the case of a single 

signal, when the signals are relatively strong (10 dB and 0 dB). However, 

when both signals are relatively weak (0 dB and -10 dB, -10 dB and -13 dB), 

the vector agreement, though still affected adversely by the noise 

correlation, is consistently good. 

The data in Tables 3-3 and 3-4 show that the stronger 

signal's canonical correlations (>^i) are slightly increased by increasing 

noise correlation, while the second canonical correlation (^2) is 

affected very little, being more influenced by the relative SNR values. 
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3.3      INTERPRETATIONS OF THE NUMERICAL RESULTS 

From our numerical studies in some cases we may draw conclusions, 

while in other cases the trends observed stimulate further questions. 

Among the conclusions which seem appropriate are the 

following: 

(a) For a single signal, the canonical correlation concept 

is sound. The technique allows detection of the signal to be based on the 

largest of the roots (A^), and the vector solution corresponding to x^ 

constitutes a beamforming solution for the direction of the signal's arrival 

Thus detection can take place without actually forming a beam, and if the 

relative sensor positions are known, the direction of arrival can be 

determined. - 

(b) Inter-sensor noise correlation as high as 20 per cent has 

little effect on the solution for a single signal, for signals as weak as 

zero dB relative to the noise. 

(c) For relatively strong (10 dB SNR) first signals, the 

canonical correlation solution is degraded severely when there is a second 

signal present, unless the array spacing is small (less than a quarter 

wavelength) or the second signal is quite weak (10 dB below first signal). 

(d) In general inter-sensor noise correlation degrades the 

canonical correlation solution for two signals. 
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Trends observed which are so far inconclusive with the 

amount of data generated include the following: 

(a) Possible superiority of certain sensor patterns over 

others for canonical correlation solutions; more data is needed to 

distinguish between the effects of array configuration and sensor spacing. 

(b) Possible good vector solutions for the important case 

of weak signals (see Figure 3-14); further data is needed to clarify 

the dependence of multiple signal solutions on signal strength. 

(c) Possible solutions for second signal; the second canonical 

correlation {\^)  value is proportional to the strength of the second signal; 

however, an attempt was not made to calculate the vector solution for the 

second signal. 

In addition, based on working with this problem and exposure 

to the numerical results obtained so far, we offer the following conjecture 

concerning the performance of the canonical correlation technique: 

Conjecture: The vector solution for multiple signals will 

improve for more than two sensors per sub-array, since angular resolution 

is in general improved by increasing the number of sensors and the overall 

array size. 

Support for Conjecture: For the case of a linear array with 

2m sensors, the inner product between the direction vectors for two signals 

is given by (2-45), in which Dm(0i-82) is the half-array beam pattern. 
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For large m and 61 = 62, this pattern response is small; let us suggest the 

approximation that the inner product is negligible. The consequence of zero 

inner product is seen by substituting Z2 = 0 into (2-41) and (2-42), giving 

the matrix in (2-41) the form 

mr r mp V V * + r 
- 1- 1 .1+mr W^Wi >I 

= a I + bv_^v*^+ cw^W; * 

where, again it is assumed that 

V  V i 
-1 -1 

0. 

(3-12a) 

(3-12b) 

Using (3-12b) and (2-25), the determinant of the matrix (3-12a)whose roots 

give the canonical correlations is found to be 

det [a I + b\/ V * + cw w *-] L _i_i        _i_i  J 

= a"^ det [I + ^ V V *] det [I + Ml + ^v,v *)"V,w *] 
a —i—i a a   —i—i    —J.—i 

= a"^"^ (a + mb) det [I + I (I - const. iiJ/i*)wiWi*] 

= a ' (a + mb) det [I + 7- w,w *] for v *w, = 0 
a —i—i —1 —i 

m-2 
= a (a + mb) (a + mc). (3-13) 

This result indicates that the two nonzero roots for v are identifiable 

with the two signals: 

M = 

\2     " \J2 

mp 
1+mp 
mr 
1+mr 

This gives confidence to expect a similarly good result for the vector 

solutions which accomplish the correlations \i  and X2 • 

(3-14) 
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4.0      RECOMMENDATIONS FOR FURTHER mmv 

The original motivation for investigating the canonical 

correlation technique was to determine whether its application to array 

processing would yield, directly and automatically,simultaneous detections 

and beam steering solutions for multiple target sources. "Directly" is 

used in the sense of not requiring a physical beam-steering mechanism to 

isolate a narrow range of source directions for detection testing of the 

beam output, but rather a numerical procedure on the covariance matrix of 

the sensor data. "Automatically" is used in the sense of the algorithm's 

not requiring knowledge of the sensor positions. 

The numerical results obtained in this study were performed 

for a minimum number of sensors (four) to implement the concept, in order 

to restrain the computational aspects of the problem. This choice was 

sufficient to demonstrate that algorithm works in detecting and beamforming 

on a single source, in agreement with the analysis. Unfortunately, this 

small number of sensors yielded generally unsatisfactory performance for 

two sources. In Section 3.3, strong support is given for the conjecture that 

this poor performance is due to the small number of sensors used in the 

calculations and that with a larger number of sensors, the algorithm will 

successfully isolate multiple sources. 

We recommend that this study be continued, using larger numbers 

of sensors and addressing the computational aspects of the problem. The 

further study should also compare in some reasonable fashion the canonical 

correlation algorithm with conventional techniques such as multiple-beam or 

beam-scan in terms of equipment complexity. 
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